Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashreprin Structured version   Visualization version   Unicode version

Theorem hashreprin 30698
Description: Express a sum of representations over an intersection using a product of the indicator function (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a  |-  ( ph  ->  A  C_  NN )
reprval.m  |-  ( ph  ->  M  e.  ZZ )
reprval.s  |-  ( ph  ->  S  e.  NN0 )
hashreprin.b  |-  ( ph  ->  B  e.  Fin )
hashreprin.1  |-  ( ph  ->  B  C_  NN )
Assertion
Ref Expression
hashreprin  |-  ( ph  ->  ( # `  (
( A  i^i  B
) (repr `  S
) M ) )  =  sum_ c  e.  ( B (repr `  S
) M ) prod_
a  e.  ( 0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  (
c `  a )
) )
Distinct variable groups:    A, c    M, c    S, a, c    ph, c    A, a    B, a, c    M, a    ph, a

Proof of Theorem hashreprin
StepHypRef Expression
1 hashreprin.1 . . . . 5  |-  ( ph  ->  B  C_  NN )
2 reprval.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
3 reprval.s . . . . 5  |-  ( ph  ->  S  e.  NN0 )
4 hashreprin.b . . . . 5  |-  ( ph  ->  B  e.  Fin )
51, 2, 3, 4reprfi 30694 . . . 4  |-  ( ph  ->  ( B (repr `  S ) M )  e.  Fin )
6 inss2 3834 . . . . . 6  |-  ( A  i^i  B )  C_  B
76a1i 11 . . . . 5  |-  ( ph  ->  ( A  i^i  B
)  C_  B )
81, 2, 3, 7reprss 30695 . . . 4  |-  ( ph  ->  ( ( A  i^i  B ) (repr `  S
) M )  C_  ( B (repr `  S
) M ) )
95, 8ssfid 8183 . . 3  |-  ( ph  ->  ( ( A  i^i  B ) (repr `  S
) M )  e. 
Fin )
10 1cnd 10056 . . 3  |-  ( ph  ->  1  e.  CC )
11 fsumconst 14522 . . 3  |-  ( ( ( ( A  i^i  B ) (repr `  S
) M )  e. 
Fin  /\  1  e.  CC )  ->  sum_ c  e.  ( ( A  i^i  B ) (repr `  S
) M ) 1  =  ( ( # `  ( ( A  i^i  B ) (repr `  S
) M ) )  x.  1 ) )
129, 10, 11syl2anc 693 . 2  |-  ( ph  -> 
sum_ c  e.  ( ( A  i^i  B
) (repr `  S
) M ) 1  =  ( ( # `  ( ( A  i^i  B ) (repr `  S
) M ) )  x.  1 ) )
1310ralrimivw 2967 . . . 4  |-  ( ph  ->  A. c  e.  ( ( A  i^i  B
) (repr `  S
) M ) 1  e.  CC )
145olcd 408 . . . 4  |-  ( ph  ->  ( ( B (repr `  S ) M ) 
C_  ( ZZ>= `  0
)  \/  ( B (repr `  S ) M )  e.  Fin ) )
15 sumss2 14457 . . . 4  |-  ( ( ( ( ( A  i^i  B ) (repr `  S ) M ) 
C_  ( B (repr `  S ) M )  /\  A. c  e.  ( ( A  i^i  B ) (repr `  S
) M ) 1  e.  CC )  /\  ( ( B (repr `  S ) M ) 
C_  ( ZZ>= `  0
)  \/  ( B (repr `  S ) M )  e.  Fin ) )  ->  sum_ c  e.  ( ( A  i^i  B ) (repr `  S
) M ) 1  =  sum_ c  e.  ( B (repr `  S
) M ) if ( c  e.  ( ( A  i^i  B
) (repr `  S
) M ) ,  1 ,  0 ) )
168, 13, 14, 15syl21anc 1325 . . 3  |-  ( ph  -> 
sum_ c  e.  ( ( A  i^i  B
) (repr `  S
) M ) 1  =  sum_ c  e.  ( B (repr `  S
) M ) if ( c  e.  ( ( A  i^i  B
) (repr `  S
) M ) ,  1 ,  0 ) )
171, 2, 3reprinrn 30696 . . . . . . . 8  |-  ( ph  ->  ( c  e.  ( ( B  i^i  A
) (repr `  S
) M )  <->  ( c  e.  ( B (repr `  S ) M )  /\  ran  c  C_  A ) ) )
18 incom 3805 . . . . . . . . . . . 12  |-  ( B  i^i  A )  =  ( A  i^i  B
)
1918oveq1i 6660 . . . . . . . . . . 11  |-  ( ( B  i^i  A ) (repr `  S ) M )  =  ( ( A  i^i  B
) (repr `  S
) M )
2019eleq2i 2693 . . . . . . . . . 10  |-  ( c  e.  ( ( B  i^i  A ) (repr `  S ) M )  <-> 
c  e.  ( ( A  i^i  B ) (repr `  S ) M ) )
2120bibi1i 328 . . . . . . . . 9  |-  ( ( c  e.  ( ( B  i^i  A ) (repr `  S ) M )  <->  ( c  e.  ( B (repr `  S ) M )  /\  ran  c  C_  A ) )  <->  ( c  e.  ( ( A  i^i  B ) (repr `  S
) M )  <->  ( c  e.  ( B (repr `  S ) M )  /\  ran  c  C_  A ) ) )
2221imbi2i 326 . . . . . . . 8  |-  ( (
ph  ->  ( c  e.  ( ( B  i^i  A ) (repr `  S
) M )  <->  ( c  e.  ( B (repr `  S ) M )  /\  ran  c  C_  A ) ) )  <-> 
( ph  ->  ( c  e.  ( ( A  i^i  B ) (repr `  S ) M )  <-> 
( c  e.  ( B (repr `  S
) M )  /\  ran  c  C_  A ) ) ) )
2317, 22mpbi 220 . . . . . . 7  |-  ( ph  ->  ( c  e.  ( ( A  i^i  B
) (repr `  S
) M )  <->  ( c  e.  ( B (repr `  S ) M )  /\  ran  c  C_  A ) ) )
2423baibd 948 . . . . . 6  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  ( c  e.  ( ( A  i^i  B ) (repr `  S
) M )  <->  ran  c  C_  A ) )
2524ifbid 4108 . . . . 5  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  if ( c  e.  ( ( A  i^i  B ) (repr `  S ) M ) ,  1 ,  0 )  =  if ( ran  c  C_  A ,  1 ,  0 ) )
26 nnex 11026 . . . . . . . . 9  |-  NN  e.  _V
2726a1i 11 . . . . . . . 8  |-  ( ph  ->  NN  e.  _V )
2827ralrimivw 2967 . . . . . . 7  |-  ( ph  ->  A. c  e.  ( B (repr `  S
) M ) NN  e.  _V )
2928r19.21bi 2932 . . . . . 6  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  NN  e.  _V )
30 fzofi 12773 . . . . . . 7  |-  ( 0..^ S )  e.  Fin
3130a1i 11 . . . . . 6  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  ( 0..^ S )  e.  Fin )
32 reprval.a . . . . . . 7  |-  ( ph  ->  A  C_  NN )
3332adantr 481 . . . . . 6  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  A  C_  NN )
341adantr 481 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  B  C_  NN )
352adantr 481 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  M  e.  ZZ )
363adantr 481 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  S  e.  NN0 )
37 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  c  e.  ( B (repr `  S
) M ) )
3834, 35, 36, 37reprf 30690 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  c : ( 0..^ S ) --> B )
3938, 34fssd 6057 . . . . . 6  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  c : ( 0..^ S ) --> NN )
4029, 31, 33, 39prodindf 30085 . . . . 5  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  prod_ a  e.  ( 0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
) )  =  if ( ran  c  C_  A ,  1 , 
0 ) )
4125, 40eqtr4d 2659 . . . 4  |-  ( (
ph  /\  c  e.  ( B (repr `  S
) M ) )  ->  if ( c  e.  ( ( A  i^i  B ) (repr `  S ) M ) ,  1 ,  0 )  =  prod_ a  e.  ( 0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  ( c `  a
) ) )
4241sumeq2dv 14433 . . 3  |-  ( ph  -> 
sum_ c  e.  ( B (repr `  S
) M ) if ( c  e.  ( ( A  i^i  B
) (repr `  S
) M ) ,  1 ,  0 )  =  sum_ c  e.  ( B (repr `  S
) M ) prod_
a  e.  ( 0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  (
c `  a )
) )
4316, 42eqtrd 2656 . 2  |-  ( ph  -> 
sum_ c  e.  ( ( A  i^i  B
) (repr `  S
) M ) 1  =  sum_ c  e.  ( B (repr `  S
) M ) prod_
a  e.  ( 0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  (
c `  a )
) )
44 hashcl 13147 . . . . 5  |-  ( ( ( A  i^i  B
) (repr `  S
) M )  e. 
Fin  ->  ( # `  (
( A  i^i  B
) (repr `  S
) M ) )  e.  NN0 )
459, 44syl 17 . . . 4  |-  ( ph  ->  ( # `  (
( A  i^i  B
) (repr `  S
) M ) )  e.  NN0 )
4645nn0cnd 11353 . . 3  |-  ( ph  ->  ( # `  (
( A  i^i  B
) (repr `  S
) M ) )  e.  CC )
4746mulid1d 10057 . 2  |-  ( ph  ->  ( ( # `  (
( A  i^i  B
) (repr `  S
) M ) )  x.  1 )  =  ( # `  (
( A  i^i  B
) (repr `  S
) M ) ) )
4812, 43, 473eqtr3rd 2665 1  |-  ( ph  ->  ( # `  (
( A  i^i  B
) (repr `  S
) M ) )  =  sum_ c  e.  ( B (repr `  S
) M ) prod_
a  e.  ( 0..^ S ) ( ( (𝟭 `  NN ) `  A ) `  (
c `  a )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ifcif 4086   ran crn 5115   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687  ..^cfzo 12465   #chash 13117   sum_csu 14416   prod_cprod 14635  𝟭cind 30072  reprcrepr 30686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-ind 30073  df-repr 30687
This theorem is referenced by:  hashrepr  30703  breprexpnat  30712
  Copyright terms: Public domain W3C validator