MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restperf Structured version   Visualization version   Unicode version

Theorem restperf 20988
Description: Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1  |-  X  = 
U. J
restcls.2  |-  K  =  ( Jt  Y )
Assertion
Ref Expression
restperf  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( K  e. Perf  <->  Y  C_  (
( limPt `  J ) `  Y ) ) )

Proof of Theorem restperf
StepHypRef Expression
1 restcls.2 . . . . 5  |-  K  =  ( Jt  Y )
2 restcls.1 . . . . . . 7  |-  X  = 
U. J
32toptopon 20722 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
4 resttopon 20965 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  Y  C_  X )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
53, 4sylanb 489 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( Jt  Y )  e.  (TopOn `  Y ) )
61, 5syl5eqel 2705 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  K  e.  (TopOn `  Y
) )
7 topontop 20718 . . . 4  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
86, 7syl 17 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  K  e.  Top )
9 eqid 2622 . . . . 5  |-  U. K  =  U. K
109isperf 20955 . . . 4  |-  ( K  e. Perf 
<->  ( K  e.  Top  /\  ( ( limPt `  K
) `  U. K )  =  U. K ) )
1110baib 944 . . 3  |-  ( K  e.  Top  ->  ( K  e. Perf  <->  ( ( limPt `  K ) `  U. K )  =  U. K ) )
128, 11syl 17 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( K  e. Perf  <->  ( ( limPt `  K ) `  U. K )  =  U. K ) )
13 sseqin2 3817 . . 3  |-  ( Y 
C_  ( ( limPt `  J ) `  Y
)  <->  ( ( (
limPt `  J ) `  Y )  i^i  Y
)  =  Y )
14 ssid 3624 . . . . . 6  |-  Y  C_  Y
152, 1restlp 20987 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  Y  C_  Y )  ->  (
( limPt `  K ) `  Y )  =  ( ( ( limPt `  J
) `  Y )  i^i  Y ) )
1614, 15mp3an3 1413 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( limPt `  K
) `  Y )  =  ( ( (
limPt `  J ) `  Y )  i^i  Y
) )
17 toponuni 20719 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
186, 17syl 17 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  =  U. K )
1918fveq2d 6195 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( limPt `  K
) `  Y )  =  ( ( limPt `  K ) `  U. K ) )
2016, 19eqtr3d 2658 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( ( limPt `  J ) `  Y
)  i^i  Y )  =  ( ( limPt `  K ) `  U. K ) )
2120, 18eqeq12d 2637 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( ( (
limPt `  J ) `  Y )  i^i  Y
)  =  Y  <->  ( ( limPt `  K ) `  U. K )  =  U. K ) )
2213, 21syl5bb 272 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( Y  C_  (
( limPt `  J ) `  Y )  <->  ( ( limPt `  K ) `  U. K )  =  U. K ) )
2312, 22bitr4d 271 1  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( K  e. Perf  <->  Y  C_  (
( limPt `  J ) `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   U.cuni 4436   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698  TopOnctopon 20715   limPtclp 20938  Perfcperf 20939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cls 20825  df-lp 20940  df-perf 20941
This theorem is referenced by:  perfcls  21169  reperflem  22621  perfdvf  23667
  Copyright terms: Public domain W3C validator