MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfdvf Structured version   Visualization version   Unicode version

Theorem perfdvf 23667
Description: The derivative is a function, whenever it is defined relative to a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
perfdvf.1  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
perfdvf  |-  ( ( Kt  S )  e. Perf  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )

Proof of Theorem perfdvf
Dummy variables  f 
s  x  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 23631 . . . . . . . . . . . . . . . . . . . 20  |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s ) 
|->  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
21dmmpt2ssx 7235 . . . . . . . . . . . . . . . . . . 19  |-  dom  _D  C_ 
U_ s  e.  ~P  CC ( { s }  X.  ( CC  ^pm  s ) )
3 simpl 473 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  -> 
<. S ,  F >.  e. 
dom  _D  )
42, 3sseldi 3601 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  -> 
<. S ,  F >.  e. 
U_ s  e.  ~P  CC ( { s }  X.  ( CC  ^pm  s ) ) )
5 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( s  =  S  ->  ( CC  ^pm  s )  =  ( CC  ^pm  S
) )
65opeliunxp2 5260 . . . . . . . . . . . . . . . . . 18  |-  ( <. S ,  F >.  e. 
U_ s  e.  ~P  CC ( { s }  X.  ( CC  ^pm  s ) )  <->  ( S  e.  ~P CC  /\  F  e.  ( CC  ^pm  S
) ) )
74, 6sylib 208 . . . . . . . . . . . . . . . . 17  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( S  e.  ~P CC  /\  F  e.  ( CC  ^pm  S )
) )
87simprd 479 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  F  e.  ( CC 
^pm  S ) )
9 cnex 10017 . . . . . . . . . . . . . . . . 17  |-  CC  e.  _V
107simpld 475 . . . . . . . . . . . . . . . . 17  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  S  e.  ~P CC )
11 elpm2g 7874 . . . . . . . . . . . . . . . . 17  |-  ( ( CC  e.  _V  /\  S  e.  ~P CC )  ->  ( F  e.  ( CC  ^pm  S
)  <->  ( F : dom  F --> CC  /\  dom  F 
C_  S ) ) )
129, 10, 11sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( F  e.  ( CC  ^pm  S )  <->  ( F : dom  F --> CC  /\  dom  F  C_  S ) ) )
138, 12mpbid 222 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( F : dom  F --> CC  /\  dom  F  C_  S ) )
1413simpld 475 . . . . . . . . . . . . . 14  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  F : dom  F --> CC )
1514adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  ->  F : dom  F --> CC )
162sseli 3599 . . . . . . . . . . . . . . . . . . . 20  |-  ( <. S ,  F >.  e. 
dom  _D  ->  <. S ,  F >.  e.  U_ s  e.  ~P  CC ( { s }  X.  ( CC  ^pm  s ) ) )
1716, 6sylib 208 . . . . . . . . . . . . . . . . . . 19  |-  ( <. S ,  F >.  e. 
dom  _D  ->  ( S  e.  ~P CC  /\  F  e.  ( CC  ^pm 
S ) ) )
1817simprd 479 . . . . . . . . . . . . . . . . . 18  |-  ( <. S ,  F >.  e. 
dom  _D  ->  F  e.  ( CC  ^pm  S
) )
1917simpld 475 . . . . . . . . . . . . . . . . . . 19  |-  ( <. S ,  F >.  e. 
dom  _D  ->  S  e. 
~P CC )
209, 19, 11sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( <. S ,  F >.  e. 
dom  _D  ->  ( F  e.  ( CC  ^pm  S )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  S ) ) )
2118, 20mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( <. S ,  F >.  e. 
dom  _D  ->  ( F : dom  F --> CC  /\  dom  F  C_  S )
)
2221simprd 479 . . . . . . . . . . . . . . . 16  |-  ( <. S ,  F >.  e. 
dom  _D  ->  dom  F  C_  S )
2322adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  dom  F  C_  S
)
2410elpwid 4170 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  S  C_  CC )
2523, 24sstrd 3613 . . . . . . . . . . . . . 14  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  dom  F  C_  CC )
2625adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  ->  dom  F  C_  CC )
27 perfdvf.1 . . . . . . . . . . . . . . . . . 18  |-  K  =  ( TopOpen ` fld )
2827cnfldtopon 22586 . . . . . . . . . . . . . . . . 17  |-  K  e.  (TopOn `  CC )
29 resttopon 20965 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Kt  S )  e.  (TopOn `  S ) )
3028, 24, 29sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( Kt  S )  e.  (TopOn `  S ) )
31 topontop 20718 . . . . . . . . . . . . . . . 16  |-  ( ( Kt  S )  e.  (TopOn `  S )  ->  ( Kt  S )  e.  Top )
3230, 31syl 17 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( Kt  S )  e.  Top )
33 toponuni 20719 . . . . . . . . . . . . . . . . 17  |-  ( ( Kt  S )  e.  (TopOn `  S )  ->  S  =  U. ( Kt  S ) )
3430, 33syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  S  =  U. ( Kt  S ) )
3523, 34sseqtrd 3641 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  dom  F  C_  U. ( Kt  S ) )
36 eqid 2622 . . . . . . . . . . . . . . . 16  |-  U. ( Kt  S )  =  U. ( Kt  S )
3736ntrss2 20861 . . . . . . . . . . . . . . 15  |-  ( ( ( Kt  S )  e.  Top  /\ 
dom  F  C_  U. ( Kt  S ) )  -> 
( ( int `  ( Kt  S ) ) `  dom  F )  C_  dom  F )
3832, 35, 37syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  dom  F )
3938sselda 3603 . . . . . . . . . . . . 13  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  ->  x  e.  dom  F )
4015, 26, 39dvlem 23660 . . . . . . . . . . . 12  |-  ( ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  /\  z  e.  ( dom  F 
\  { x }
) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  e.  CC )
41 eqid 2622 . . . . . . . . . . . 12  |-  ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) )  =  ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) )
4240, 41fmptd 6385 . . . . . . . . . . 11  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  -> 
( z  e.  ( dom  F  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) : ( dom 
F  \  { x } ) --> CC )
4326ssdifssd 3748 . . . . . . . . . . 11  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  -> 
( dom  F  \  {
x } )  C_  CC )
4428a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  K  e.  (TopOn `  CC ) )
4536ntrss3 20864 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( Kt  S )  e.  Top  /\ 
dom  F  C_  U. ( Kt  S ) )  -> 
( ( int `  ( Kt  S ) ) `  dom  F )  C_  U. ( Kt  S ) )
4632, 35, 45syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  U. ( Kt  S ) )
4746, 34sseqtr4d 3642 . . . . . . . . . . . . . . . . 17  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  S
)
48 restabs 20969 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  (TopOn `  CC )  /\  (
( int `  ( Kt  S ) ) `  dom  F )  C_  S  /\  S  e.  ~P CC )  ->  ( ( Kt  S )t  ( ( int `  ( Kt  S ) ) `  dom  F ) )  =  ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) ) )
4944, 47, 10, 48syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( Kt  S )t  ( ( int `  ( Kt  S ) ) `  dom  F ) )  =  ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) ) )
50 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( Kt  S )  e. Perf )
5136ntropn 20853 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( Kt  S )  e.  Top  /\ 
dom  F  C_  U. ( Kt  S ) )  -> 
( ( int `  ( Kt  S ) ) `  dom  F )  e.  ( Kt  S ) )
5232, 35, 51syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  e.  ( Kt  S ) )
53 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( ( Kt  S )t  ( ( int `  ( Kt  S ) ) `  dom  F ) )  =  ( ( Kt  S )t  ( ( int `  ( Kt  S ) ) `  dom  F ) )
5436, 53perfopn 20989 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Kt  S )  e. Perf  /\  ( ( int `  ( Kt  S ) ) `  dom  F )  e.  ( Kt  S ) )  -> 
( ( Kt  S )t  ( ( int `  ( Kt  S ) ) `  dom  F ) )  e. Perf
)
5550, 52, 54syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( Kt  S )t  ( ( int `  ( Kt  S ) ) `  dom  F ) )  e. Perf
)
5649, 55eqeltrrd 2702 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) )  e. Perf
)
5727cnfldtop 22587 . . . . . . . . . . . . . . . 16  |-  K  e. 
Top
5847, 24sstrd 3613 . . . . . . . . . . . . . . . 16  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  CC )
5928toponunii 20721 . . . . . . . . . . . . . . . . 17  |-  CC  =  U. K
60 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) )  =  ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) )
6159, 60restperf 20988 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Top  /\  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  CC )  ->  ( ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) )  e. Perf  <->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  (
( limPt `  K ) `  ( ( int `  ( Kt  S ) ) `  dom  F ) ) ) )
6257, 58, 61sylancr 695 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( Kt  ( ( int `  ( Kt  S ) ) `  dom  F ) )  e. Perf  <->  ( ( int `  ( Kt  S ) ) `  dom  F
)  C_  ( ( limPt `  K ) `  ( ( int `  ( Kt  S ) ) `  dom  F ) ) ) )
6356, 62mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  (
( limPt `  K ) `  ( ( int `  ( Kt  S ) ) `  dom  F ) ) )
6457a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  K  e.  Top )
6559lpss3 20948 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Top  /\  dom  F  C_  CC  /\  (
( int `  ( Kt  S ) ) `  dom  F )  C_  dom  F )  ->  ( ( limPt `  K ) `  ( ( int `  ( Kt  S ) ) `  dom  F ) )  C_  ( ( limPt `  K
) `  dom  F ) )
6664, 25, 38, 65syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( limPt `  K
) `  ( ( int `  ( Kt  S ) ) `  dom  F
) )  C_  (
( limPt `  K ) `  dom  F ) )
6763, 66sstrd 3613 . . . . . . . . . . . . 13  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( ( int `  ( Kt  S ) ) `  dom  F )  C_  (
( limPt `  K ) `  dom  F ) )
6867sselda 3603 . . . . . . . . . . . 12  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  ->  x  e.  ( ( limPt `  K ) `  dom  F ) )
6959lpdifsn 20947 . . . . . . . . . . . . 13  |-  ( ( K  e.  Top  /\  dom  F  C_  CC )  ->  ( x  e.  ( ( limPt `  K ) `  dom  F )  <->  x  e.  ( ( limPt `  K
) `  ( dom  F 
\  { x }
) ) ) )
7057, 26, 69sylancr 695 . . . . . . . . . . . 12  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  -> 
( x  e.  ( ( limPt `  K ) `  dom  F )  <->  x  e.  ( ( limPt `  K
) `  ( dom  F 
\  { x }
) ) ) )
7168, 70mpbid 222 . . . . . . . . . . 11  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  ->  x  e.  ( ( limPt `  K ) `  ( dom  F  \  {
x } ) ) )
7242, 43, 71, 27limcmo 23646 . . . . . . . . . 10  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x  e.  (
( int `  ( Kt  S ) ) `  dom  F ) )  ->  E* y  y  e.  ( ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
7372ex 450 . . . . . . . . 9  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( x  e.  ( ( int `  ( Kt  S ) ) `  dom  F )  ->  E* y  y  e.  (
( z  e.  ( dom  F  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) ) )
74 moanimv 2531 . . . . . . . . 9  |-  ( E* y ( x  e.  ( ( int `  ( Kt  S ) ) `  dom  F )  /\  y  e.  ( ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  <->  ( x  e.  ( ( int `  ( Kt  S ) ) `  dom  F )  ->  E* y  y  e.  (
( z  e.  ( dom  F  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) ) )
7573, 74sylibr 224 . . . . . . . 8  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  E* y ( x  e.  ( ( int `  ( Kt  S ) ) `  dom  F )  /\  y  e.  ( ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) )
76 eqid 2622 . . . . . . . . . 10  |-  ( Kt  S )  =  ( Kt  S )
7776, 27, 41, 24, 14, 23eldv 23662 . . . . . . . . 9  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( x ( S  _D  F ) y  <-> 
( x  e.  ( ( int `  ( Kt  S ) ) `  dom  F )  /\  y  e.  ( ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) ) )
7877mobidv 2491 . . . . . . . 8  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( E* y  x ( S  _D  F
) y  <->  E* y
( x  e.  ( ( int `  ( Kt  S ) ) `  dom  F )  /\  y  e.  ( ( z  e.  ( dom  F  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) ) ) )
7975, 78mpbird 247 . . . . . . 7  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  E* y  x ( S  _D  F ) y )
8079alrimiv 1855 . . . . . 6  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  A. x E* y  x ( S  _D  F ) y )
81 reldv 23634 . . . . . . 7  |-  Rel  ( S  _D  F )
82 dffun6 5903 . . . . . . 7  |-  ( Fun  ( S  _D  F
)  <->  ( Rel  ( S  _D  F )  /\  A. x E* y  x ( S  _D  F
) y ) )
8381, 82mpbiran 953 . . . . . 6  |-  ( Fun  ( S  _D  F
)  <->  A. x E* y  x ( S  _D  F ) y )
8480, 83sylibr 224 . . . . 5  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  Fun  ( S  _D  F ) )
85 funfn 5918 . . . . 5  |-  ( Fun  ( S  _D  F
)  <->  ( S  _D  F )  Fn  dom  ( S  _D  F
) )
8684, 85sylib 208 . . . 4  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( S  _D  F
)  Fn  dom  ( S  _D  F ) )
87 vex 3203 . . . . . . 7  |-  y  e. 
_V
8887elrn 5366 . . . . . 6  |-  ( y  e.  ran  ( S  _D  F )  <->  E. x  x ( S  _D  F ) y )
8924, 14, 23dvcl 23663 . . . . . . . 8  |-  ( ( ( <. S ,  F >.  e.  dom  _D  /\  ( Kt  S )  e. Perf )  /\  x ( S  _D  F ) y )  ->  y  e.  CC )
9089ex 450 . . . . . . 7  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( x ( S  _D  F ) y  ->  y  e.  CC ) )
9190exlimdv 1861 . . . . . 6  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( E. x  x ( S  _D  F
) y  ->  y  e.  CC ) )
9288, 91syl5bi 232 . . . . 5  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( y  e.  ran  ( S  _D  F
)  ->  y  e.  CC ) )
9392ssrdv 3609 . . . 4  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ran  ( S  _D  F )  C_  CC )
94 df-f 5892 . . . 4  |-  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC  <->  ( ( S  _D  F
)  Fn  dom  ( S  _D  F )  /\  ran  ( S  _D  F
)  C_  CC )
)
9586, 93, 94sylanbrc 698 . . 3  |-  ( (
<. S ,  F >.  e. 
dom  _D  /\  ( Kt  S )  e. Perf )  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
9695ex 450 . 2  |-  ( <. S ,  F >.  e. 
dom  _D  ->  ( ( Kt  S )  e. Perf  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC ) )
97 f0 6086 . . . 4  |-  (/) : (/) --> CC
98 df-ov 6653 . . . . . 6  |-  ( S  _D  F )  =  (  _D  `  <. S ,  F >. )
99 ndmfv 6218 . . . . . 6  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  (  _D 
`  <. S ,  F >. )  =  (/) )
10098, 99syl5eq 2668 . . . . 5  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  ( S  _D  F )  =  (/) )
101100dmeqd 5326 . . . . . 6  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  dom  ( S  _D  F )  =  dom  (/) )
102 dm0 5339 . . . . . 6  |-  dom  (/)  =  (/)
103101, 102syl6eq 2672 . . . . 5  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  dom  ( S  _D  F )  =  (/) )
104100, 103feq12d 6033 . . . 4  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  ( ( S  _D  F ) : dom  ( S  _D  F ) --> CC  <->  (/) :
(/) --> CC ) )
10597, 104mpbiri 248 . . 3  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
106105a1d 25 . 2  |-  ( -. 
<. S ,  F >.  e. 
dom  _D  ->  ( ( Kt  S )  e. Perf  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC ) )
10796, 106pm2.61i 176 1  |-  ( ( Kt  S )  e. Perf  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E*wmo 2471   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115   Rel wrel 5119   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934    - cmin 10266    / cdiv 10684   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715   intcnt 20821   limPtclp 20938  Perfcperf 20939   lim CC climc 23626    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvfg  23670
  Copyright terms: Public domain W3C validator