MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reperflem Structured version   Visualization version   Unicode version

Theorem reperflem 22621
Description: A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016.)
Hypotheses
Ref Expression
recld2.1  |-  J  =  ( TopOpen ` fld )
reperflem.2  |-  ( ( u  e.  S  /\  v  e.  RR )  ->  ( u  +  v )  e.  S )
reperflem.3  |-  S  C_  CC
Assertion
Ref Expression
reperflem  |-  ( Jt  S )  e. Perf
Distinct variable groups:    u, J    v, u, S
Allowed substitution hint:    J( v)

Proof of Theorem reperflem
Dummy variables  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnxmet 22576 . . . . . . 7  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
2 reperflem.3 . . . . . . . 8  |-  S  C_  CC
32sseli 3599 . . . . . . 7  |-  ( u  e.  S  ->  u  e.  CC )
4 recld2.1 . . . . . . . . 9  |-  J  =  ( TopOpen ` fld )
54cnfldtopn 22585 . . . . . . . 8  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
65neibl 22306 . . . . . . 7  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  u  e.  CC )  ->  ( n  e.  ( ( nei `  J
) `  { u } )  <->  ( n  C_  CC  /\  E. r  e.  RR+  ( u (
ball `  ( abs  o. 
-  ) ) r )  C_  n )
) )
71, 3, 6sylancr 695 . . . . . 6  |-  ( u  e.  S  ->  (
n  e.  ( ( nei `  J ) `
 { u }
)  <->  ( n  C_  CC  /\  E. r  e.  RR+  ( u ( ball `  ( abs  o.  -  ) ) r ) 
C_  n ) ) )
8 reperflem.2 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  S  /\  v  e.  RR )  ->  ( u  +  v )  e.  S )
98ralrimiva 2966 . . . . . . . . . . . . . . . 16  |-  ( u  e.  S  ->  A. v  e.  RR  ( u  +  v )  e.  S
)
10 rpre 11839 . . . . . . . . . . . . . . . . 17  |-  ( r  e.  RR+  ->  r  e.  RR )
1110rehalfcld 11279 . . . . . . . . . . . . . . . 16  |-  ( r  e.  RR+  ->  ( r  /  2 )  e.  RR )
12 oveq2 6658 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( r  / 
2 )  ->  (
u  +  v )  =  ( u  +  ( r  /  2
) ) )
1312eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( r  / 
2 )  ->  (
( u  +  v )  e.  S  <->  ( u  +  ( r  / 
2 ) )  e.  S ) )
1413rspccva 3308 . . . . . . . . . . . . . . . 16  |-  ( ( A. v  e.  RR  ( u  +  v
)  e.  S  /\  ( r  /  2
)  e.  RR )  ->  ( u  +  ( r  /  2
) )  e.  S
)
159, 11, 14syl2an 494 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( u  +  ( r  /  2 ) )  e.  S )
162, 15sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( u  +  ( r  /  2 ) )  e.  CC )
173adantr 481 . . . . . . . . . . . . . 14  |-  ( ( u  e.  S  /\  r  e.  RR+ )  ->  u  e.  CC )
18 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1918cnmetdval 22574 . . . . . . . . . . . . . 14  |-  ( ( ( u  +  ( r  /  2 ) )  e.  CC  /\  u  e.  CC )  ->  ( ( u  +  ( r  /  2
) ) ( abs 
o.  -  ) u
)  =  ( abs `  ( ( u  +  ( r  /  2
) )  -  u
) ) )
2016, 17, 19syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( ( u  +  ( r  /  2
) ) ( abs 
o.  -  ) u
)  =  ( abs `  ( ( u  +  ( r  /  2
) )  -  u
) ) )
21 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
r  e.  RR+ )
2221rphalfcld 11884 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( r  /  2
)  e.  RR+ )
2322rpcnd 11874 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( r  /  2
)  e.  CC )
2417, 23pncan2d 10394 . . . . . . . . . . . . . 14  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( ( u  +  ( r  /  2
) )  -  u
)  =  ( r  /  2 ) )
2524fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( abs `  (
( u  +  ( r  /  2 ) )  -  u ) )  =  ( abs `  ( r  /  2
) ) )
2622rpred 11872 . . . . . . . . . . . . . 14  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( r  /  2
)  e.  RR )
2722rpge0d 11876 . . . . . . . . . . . . . 14  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
0  <_  ( r  /  2 ) )
2826, 27absidd 14161 . . . . . . . . . . . . 13  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( abs `  (
r  /  2 ) )  =  ( r  /  2 ) )
2920, 25, 283eqtrd 2660 . . . . . . . . . . . 12  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( ( u  +  ( r  /  2
) ) ( abs 
o.  -  ) u
)  =  ( r  /  2 ) )
30 rphalflt 11860 . . . . . . . . . . . . 13  |-  ( r  e.  RR+  ->  ( r  /  2 )  < 
r )
3130adantl 482 . . . . . . . . . . . 12  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( r  /  2
)  <  r )
3229, 31eqbrtrd 4675 . . . . . . . . . . 11  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( ( u  +  ( r  /  2
) ) ( abs 
o.  -  ) u
)  <  r )
331a1i 11 . . . . . . . . . . . 12  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( abs  o.  -  )  e.  ( *Met `  CC ) )
34 rpxr 11840 . . . . . . . . . . . . 13  |-  ( r  e.  RR+  ->  r  e. 
RR* )
3534adantl 482 . . . . . . . . . . . 12  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
r  e.  RR* )
36 elbl3 22197 . . . . . . . . . . . 12  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  r  e.  RR* )  /\  ( u  e.  CC  /\  ( u  +  ( r  / 
2 ) )  e.  CC ) )  -> 
( ( u  +  ( r  /  2
) )  e.  ( u ( ball `  ( abs  o.  -  ) ) r )  <->  ( (
u  +  ( r  /  2 ) ) ( abs  o.  -  ) u )  < 
r ) )
3733, 35, 17, 16, 36syl22anc 1327 . . . . . . . . . . 11  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( ( u  +  ( r  /  2
) )  e.  ( u ( ball `  ( abs  o.  -  ) ) r )  <->  ( (
u  +  ( r  /  2 ) ) ( abs  o.  -  ) u )  < 
r ) )
3832, 37mpbird 247 . . . . . . . . . 10  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( u  +  ( r  /  2 ) )  e.  ( u ( ball `  ( abs  o.  -  ) ) r ) )
3922rpne0d 11877 . . . . . . . . . . . . 13  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( r  /  2
)  =/=  0 )
4024, 39eqnetrd 2861 . . . . . . . . . . . 12  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( ( u  +  ( r  /  2
) )  -  u
)  =/=  0 )
4116, 17, 40subne0ad 10403 . . . . . . . . . . 11  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( u  +  ( r  /  2 ) )  =/=  u )
42 eldifsn 4317 . . . . . . . . . . 11  |-  ( ( u  +  ( r  /  2 ) )  e.  ( S  \  { u } )  <-> 
( ( u  +  ( r  /  2
) )  e.  S  /\  ( u  +  ( r  /  2 ) )  =/=  u ) )
4315, 41, 42sylanbrc 698 . . . . . . . . . 10  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( u  +  ( r  /  2 ) )  e.  ( S 
\  { u }
) )
44 inelcm 4032 . . . . . . . . . 10  |-  ( ( ( u  +  ( r  /  2 ) )  e.  ( u ( ball `  ( abs  o.  -  ) ) r )  /\  (
u  +  ( r  /  2 ) )  e.  ( S  \  { u } ) )  ->  ( (
u ( ball `  ( abs  o.  -  ) ) r )  i^i  ( S  \  { u }
) )  =/=  (/) )
4538, 43, 44syl2anc 693 . . . . . . . . 9  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( ( u (
ball `  ( abs  o. 
-  ) ) r )  i^i  ( S 
\  { u }
) )  =/=  (/) )
46 ssrin 3838 . . . . . . . . . 10  |-  ( ( u ( ball `  ( abs  o.  -  ) ) r )  C_  n  ->  ( ( u (
ball `  ( abs  o. 
-  ) ) r )  i^i  ( S 
\  { u }
) )  C_  (
n  i^i  ( S  \  { u } ) ) )
47 ssn0 3976 . . . . . . . . . . 11  |-  ( ( ( ( u (
ball `  ( abs  o. 
-  ) ) r )  i^i  ( S 
\  { u }
) )  C_  (
n  i^i  ( S  \  { u } ) )  /\  ( ( u ( ball `  ( abs  o.  -  ) ) r )  i^i  ( S  \  { u }
) )  =/=  (/) )  -> 
( n  i^i  ( S  \  { u }
) )  =/=  (/) )
4847ex 450 . . . . . . . . . 10  |-  ( ( ( u ( ball `  ( abs  o.  -  ) ) r )  i^i  ( S  \  { u } ) )  C_  ( n  i^i  ( S  \  {
u } ) )  ->  ( ( ( u ( ball `  ( abs  o.  -  ) ) r )  i^i  ( S  \  { u }
) )  =/=  (/)  ->  (
n  i^i  ( S  \  { u } ) )  =/=  (/) ) )
4946, 48syl 17 . . . . . . . . 9  |-  ( ( u ( ball `  ( abs  o.  -  ) ) r )  C_  n  ->  ( ( ( u ( ball `  ( abs  o.  -  ) ) r )  i^i  ( S  \  { u }
) )  =/=  (/)  ->  (
n  i^i  ( S  \  { u } ) )  =/=  (/) ) )
5045, 49syl5com 31 . . . . . . . 8  |-  ( ( u  e.  S  /\  r  e.  RR+ )  -> 
( ( u (
ball `  ( abs  o. 
-  ) ) r )  C_  n  ->  ( n  i^i  ( S 
\  { u }
) )  =/=  (/) ) )
5150rexlimdva 3031 . . . . . . 7  |-  ( u  e.  S  ->  ( E. r  e.  RR+  (
u ( ball `  ( abs  o.  -  ) ) r )  C_  n  ->  ( n  i^i  ( S  \  { u }
) )  =/=  (/) ) )
5251adantld 483 . . . . . 6  |-  ( u  e.  S  ->  (
( n  C_  CC  /\ 
E. r  e.  RR+  ( u ( ball `  ( abs  o.  -  ) ) r ) 
C_  n )  -> 
( n  i^i  ( S  \  { u }
) )  =/=  (/) ) )
537, 52sylbid 230 . . . . 5  |-  ( u  e.  S  ->  (
n  e.  ( ( nei `  J ) `
 { u }
)  ->  ( n  i^i  ( S  \  {
u } ) )  =/=  (/) ) )
5453ralrimiv 2965 . . . 4  |-  ( u  e.  S  ->  A. n  e.  ( ( nei `  J
) `  { u } ) ( n  i^i  ( S  \  { u } ) )  =/=  (/) )
554cnfldtop 22587 . . . . . 6  |-  J  e. 
Top
564cnfldtopon 22586 . . . . . . . 8  |-  J  e.  (TopOn `  CC )
5756toponunii 20721 . . . . . . 7  |-  CC  =  U. J
5857islp2 20949 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  CC  /\  u  e.  CC )  ->  (
u  e.  ( (
limPt `  J ) `  S )  <->  A. n  e.  ( ( nei `  J
) `  { u } ) ( n  i^i  ( S  \  { u } ) )  =/=  (/) ) )
5955, 2, 58mp3an12 1414 . . . . 5  |-  ( u  e.  CC  ->  (
u  e.  ( (
limPt `  J ) `  S )  <->  A. n  e.  ( ( nei `  J
) `  { u } ) ( n  i^i  ( S  \  { u } ) )  =/=  (/) ) )
603, 59syl 17 . . . 4  |-  ( u  e.  S  ->  (
u  e.  ( (
limPt `  J ) `  S )  <->  A. n  e.  ( ( nei `  J
) `  { u } ) ( n  i^i  ( S  \  { u } ) )  =/=  (/) ) )
6154, 60mpbird 247 . . 3  |-  ( u  e.  S  ->  u  e.  ( ( limPt `  J
) `  S )
)
6261ssriv 3607 . 2  |-  S  C_  ( ( limPt `  J
) `  S )
63 eqid 2622 . . . 4  |-  ( Jt  S )  =  ( Jt  S )
6457, 63restperf 20988 . . 3  |-  ( ( J  e.  Top  /\  S  C_  CC )  -> 
( ( Jt  S )  e. Perf 
<->  S  C_  ( ( limPt `  J ) `  S ) ) )
6555, 2, 64mp2an 708 . 2  |-  ( ( Jt  S )  e. Perf  <->  S  C_  (
( limPt `  J ) `  S ) )
6662, 65mpbir 221 1  |-  ( Jt  S )  e. Perf
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653    o. ccom 5118   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939   RR*cxr 10073    < clt 10074    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832   abscabs 13974   ↾t crest 16081   TopOpenctopn 16082   *Metcxmt 19731   ballcbl 19733  ℂfldccnfld 19746   Topctop 20698   neicnei 20901   limPtclp 20938  Perfcperf 20939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-xms 22125  df-ms 22126
This theorem is referenced by:  reperf  22622  cnperf  22623
  Copyright terms: Public domain W3C validator