Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvsca Structured version   Visualization version   Unicode version

Theorem resvsca 29830
Description: Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvsca.r  |-  R  =  ( Wv  A )
resvsca.f  |-  F  =  (Scalar `  W )
resvsca.b  |-  B  =  ( Base `  F
)
Assertion
Ref Expression
resvsca  |-  ( A  e.  V  ->  ( Fs  A )  =  (Scalar `  R ) )

Proof of Theorem resvsca
StepHypRef Expression
1 resvsca.f . . . . 5  |-  F  =  (Scalar `  W )
2 fvex 6201 . . . . . . . 8  |-  (Scalar `  W )  e.  _V
31, 2eqeltri 2697 . . . . . . 7  |-  F  e. 
_V
4 eqid 2622 . . . . . . . 8  |-  ( Fs  A )  =  ( Fs  A )
5 resvsca.b . . . . . . . 8  |-  B  =  ( Base `  F
)
64, 5ressid2 15928 . . . . . . 7  |-  ( ( B  C_  A  /\  F  e.  _V  /\  A  e.  V )  ->  ( Fs  A )  =  F )
73, 6mp3an2 1412 . . . . . 6  |-  ( ( B  C_  A  /\  A  e.  V )  ->  ( Fs  A )  =  F )
873adant2 1080 . . . . 5  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( Fs  A )  =  F )
9 resvsca.r . . . . . . 7  |-  R  =  ( Wv  A )
109, 1, 5resvid2 29828 . . . . . 6  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  R  =  W )
1110fveq2d 6195 . . . . 5  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  (Scalar `  R )  =  (Scalar `  W ) )
121, 8, 113eqtr4a 2682 . . . 4  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( Fs  A )  =  (Scalar `  R ) )
13123expib 1268 . . 3  |-  ( B 
C_  A  ->  (
( W  e.  _V  /\  A  e.  V )  ->  ( Fs  A )  =  (Scalar `  R
) ) )
14 simp2 1062 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  W  e.  _V )
15 ovex 6678 . . . . . 6  |-  ( Fs  A )  e.  _V
16 scaid 16014 . . . . . . 7  |- Scalar  = Slot  (Scalar ` 
ndx )
1716setsid 15914 . . . . . 6  |-  ( ( W  e.  _V  /\  ( Fs  A )  e.  _V )  ->  ( Fs  A )  =  (Scalar `  ( W sSet  <. (Scalar `  ndx ) ,  ( Fs  A
) >. ) ) )
1814, 15, 17sylancl 694 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( Fs  A )  =  (Scalar `  ( W sSet  <. (Scalar `  ndx ) ,  ( Fs  A
) >. ) ) )
199, 1, 5resvval2 29829 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  R  =  ( W sSet  <. (Scalar `  ndx ) ,  ( Fs  A
) >. ) )
2019fveq2d 6195 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  (Scalar `  R )  =  (Scalar `  ( W sSet  <.
(Scalar `  ndx ) ,  ( Fs  A ) >. )
) )
2118, 20eqtr4d 2659 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( Fs  A )  =  (Scalar `  R
) )
22213expib 1268 . . 3  |-  ( -.  B  C_  A  ->  ( ( W  e.  _V  /\  A  e.  V )  ->  ( Fs  A )  =  (Scalar `  R
) ) )
2313, 22pm2.61i 176 . 2  |-  ( ( W  e.  _V  /\  A  e.  V )  ->  ( Fs  A )  =  (Scalar `  R ) )
24 0fv 6227 . . . . 5  |-  ( (/) `  (Scalar `  ndx ) )  =  (/)
25 0ex 4790 . . . . . 6  |-  (/)  e.  _V
2625, 16strfvn 15879 . . . . 5  |-  (Scalar `  (/) )  =  ( (/) `  (Scalar `  ndx ) )
27 ress0 15934 . . . . 5  |-  ( (/)s  A )  =  (/)
2824, 26, 273eqtr4ri 2655 . . . 4  |-  ( (/)s  A )  =  (Scalar `  (/) )
29 fvprc 6185 . . . . . 6  |-  ( -.  W  e.  _V  ->  (Scalar `  W )  =  (/) )
301, 29syl5eq 2668 . . . . 5  |-  ( -.  W  e.  _V  ->  F  =  (/) )
3130oveq1d 6665 . . . 4  |-  ( -.  W  e.  _V  ->  ( Fs  A )  =  (
(/)s  A ) )
32 reldmresv 29826 . . . . . . 7  |-  Rel  domv
3332ovprc1 6684 . . . . . 6  |-  ( -.  W  e.  _V  ->  ( Wv  A )  =  (/) )
349, 33syl5eq 2668 . . . . 5  |-  ( -.  W  e.  _V  ->  R  =  (/) )
3534fveq2d 6195 . . . 4  |-  ( -.  W  e.  _V  ->  (Scalar `  R )  =  (Scalar `  (/) ) )
3628, 31, 353eqtr4a 2682 . . 3  |-  ( -.  W  e.  _V  ->  ( Fs  A )  =  (Scalar `  R ) )
3736adantr 481 . 2  |-  ( ( -.  W  e.  _V  /\  A  e.  V )  ->  ( Fs  A )  =  (Scalar `  R
) )
3823, 37pm2.61ian 831 1  |-  ( A  e.  V  ->  ( Fs  A )  =  (Scalar `  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   (/)c0 3915   <.cop 4183   ` cfv 5888  (class class class)co 6650   ndxcnx 15854   sSet csts 15855   Basecbs 15857   ↾s cress 15858  Scalarcsca 15944   ↾v cresv 29824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-sca 15957  df-resv 29825
This theorem is referenced by:  xrge0slmod  29844  sitgaddlemb  30410
  Copyright terms: Public domain W3C validator