MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0s Structured version   Visualization version   Unicode version

Theorem scott0s 8751
Description: Theorem scheme version of scott0 8749. The collection of all  x of minimum rank such that 
ph ( x ) is true, is not empty iff there is an  x such that  ph ( x ) holds. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scott0s  |-  ( E. x ph  <->  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }  =/=  (/) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem scott0s
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 abn0 3954 . 2  |-  ( { x  |  ph }  =/=  (/)  <->  E. x ph )
2 scott0 8749 . . . 4  |-  ( { x  |  ph }  =  (/)  <->  { z  e.  {
x  |  ph }  |  A. y  e.  {
x  |  ph } 
( rank `  z )  C_  ( rank `  y
) }  =  (/) )
3 nfcv 2764 . . . . . . 7  |-  F/_ z { x  |  ph }
4 nfab1 2766 . . . . . . 7  |-  F/_ x { x  |  ph }
5 nfv 1843 . . . . . . . 8  |-  F/ x
( rank `  z )  C_  ( rank `  y
)
64, 5nfral 2945 . . . . . . 7  |-  F/ x A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y )
7 nfv 1843 . . . . . . 7  |-  F/ z A. y  e.  {
x  |  ph } 
( rank `  x )  C_  ( rank `  y
)
8 fveq2 6191 . . . . . . . . 9  |-  ( z  =  x  ->  ( rank `  z )  =  ( rank `  x
) )
98sseq1d 3632 . . . . . . . 8  |-  ( z  =  x  ->  (
( rank `  z )  C_  ( rank `  y
)  <->  ( rank `  x
)  C_  ( rank `  y ) ) )
109ralbidv 2986 . . . . . . 7  |-  ( z  =  x  ->  ( A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y )  <->  A. y  e.  { x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) ) )
113, 4, 6, 7, 10cbvrab 3198 . . . . . 6  |-  { z  e.  { x  | 
ph }  |  A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y ) }  =  { x  e. 
{ x  |  ph }  |  A. y  e.  { x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) }
12 df-rab 2921 . . . . . 6  |-  { x  e.  { x  |  ph }  |  A. y  e.  { x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) }  =  { x  |  (
x  e.  { x  |  ph }  /\  A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y ) ) }
13 abid 2610 . . . . . . . 8  |-  ( x  e.  { x  | 
ph }  <->  ph )
14 df-ral 2917 . . . . . . . . 9  |-  ( A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y )  <->  A. y
( y  e.  {
x  |  ph }  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
15 df-sbc 3436 . . . . . . . . . . 11  |-  ( [. y  /  x ]. ph  <->  y  e.  { x  |  ph }
)
1615imbi1i 339 . . . . . . . . . 10  |-  ( (
[. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) )  <-> 
( y  e.  {
x  |  ph }  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
1716albii 1747 . . . . . . . . 9  |-  ( A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) )  <->  A. y
( y  e.  {
x  |  ph }  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
1814, 17bitr4i 267 . . . . . . . 8  |-  ( A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y )  <->  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) )
1913, 18anbi12i 733 . . . . . . 7  |-  ( ( x  e.  { x  |  ph }  /\  A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y ) )  <-> 
( ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) )
2019abbii 2739 . . . . . 6  |-  { x  |  ( x  e. 
{ x  |  ph }  /\  A. y  e. 
{ x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) ) }  =  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }
2111, 12, 203eqtri 2648 . . . . 5  |-  { z  e.  { x  | 
ph }  |  A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y ) }  =  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }
2221eqeq1i 2627 . . . 4  |-  ( { z  e.  { x  |  ph }  |  A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y ) }  =  (/)  <->  { x  |  (
ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) }  =  (/) )
232, 22bitri 264 . . 3  |-  ( { x  |  ph }  =  (/)  <->  { x  |  (
ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) }  =  (/) )
2423necon3bii 2846 . 2  |-  ( { x  |  ph }  =/=  (/)  <->  { x  |  (
ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) }  =/=  (/) )
251, 24bitr3i 266 1  |-  ( E. x ph  <->  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   {crab 2916   [.wsbc 3435    C_ wss 3574   (/)c0 3915   ` cfv 5888   rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by:  hta  8760
  Copyright terms: Public domain W3C validator