MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  serge0 Structured version   Visualization version   Unicode version

Theorem serge0 12855
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
serge0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
serge0.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
serge0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )
Assertion
Ref Expression
serge0  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem serge0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serge0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 serge0.2 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
3 serge0.3 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )
4 breq2 4657 . . . . 5  |-  ( x  =  ( F `  k )  ->  (
0  <_  x  <->  0  <_  ( F `  k ) ) )
54elrab 3363 . . . 4  |-  ( ( F `  k )  e.  { x  e.  RR  |  0  <_  x }  <->  ( ( F `
 k )  e.  RR  /\  0  <_ 
( F `  k
) ) )
62, 3, 5sylanbrc 698 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  {
x  e.  RR  | 
0  <_  x }
)
7 breq2 4657 . . . . . 6  |-  ( x  =  k  ->  (
0  <_  x  <->  0  <_  k ) )
87elrab 3363 . . . . 5  |-  ( k  e.  { x  e.  RR  |  0  <_  x }  <->  ( k  e.  RR  /\  0  <_ 
k ) )
9 breq2 4657 . . . . . 6  |-  ( x  =  y  ->  (
0  <_  x  <->  0  <_  y ) )
109elrab 3363 . . . . 5  |-  ( y  e.  { x  e.  RR  |  0  <_  x }  <->  ( y  e.  RR  /\  0  <_ 
y ) )
11 readdcl 10019 . . . . . . 7  |-  ( ( k  e.  RR  /\  y  e.  RR )  ->  ( k  +  y )  e.  RR )
1211ad2ant2r 783 . . . . . 6  |-  ( ( ( k  e.  RR  /\  0  <_  k )  /\  ( y  e.  RR  /\  0  <_  y )
)  ->  ( k  +  y )  e.  RR )
13 addge0 10517 . . . . . . 7  |-  ( ( ( k  e.  RR  /\  y  e.  RR )  /\  ( 0  <_ 
k  /\  0  <_  y ) )  ->  0  <_  ( k  +  y ) )
1413an4s 869 . . . . . 6  |-  ( ( ( k  e.  RR  /\  0  <_  k )  /\  ( y  e.  RR  /\  0  <_  y )
)  ->  0  <_  ( k  +  y ) )
15 breq2 4657 . . . . . . 7  |-  ( x  =  ( k  +  y )  ->  (
0  <_  x  <->  0  <_  ( k  +  y ) ) )
1615elrab 3363 . . . . . 6  |-  ( ( k  +  y )  e.  { x  e.  RR  |  0  <_  x }  <->  ( ( k  +  y )  e.  RR  /\  0  <_ 
( k  +  y ) ) )
1712, 14, 16sylanbrc 698 . . . . 5  |-  ( ( ( k  e.  RR  /\  0  <_  k )  /\  ( y  e.  RR  /\  0  <_  y )
)  ->  ( k  +  y )  e. 
{ x  e.  RR  |  0  <_  x } )
188, 10, 17syl2anb 496 . . . 4  |-  ( ( k  e.  { x  e.  RR  |  0  <_  x }  /\  y  e.  { x  e.  RR  |  0  <_  x } )  ->  (
k  +  y )  e.  { x  e.  RR  |  0  <_  x } )
1918adantl 482 . . 3  |-  ( (
ph  /\  ( k  e.  { x  e.  RR  |  0  <_  x }  /\  y  e.  {
x  e.  RR  | 
0  <_  x }
) )  ->  (
k  +  y )  e.  { x  e.  RR  |  0  <_  x } )
201, 6, 19seqcl 12821 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  e. 
{ x  e.  RR  |  0  <_  x } )
21 breq2 4657 . . . 4  |-  ( x  =  (  seq M
(  +  ,  F
) `  N )  ->  ( 0  <_  x  <->  0  <_  (  seq M
(  +  ,  F
) `  N )
) )
2221elrab 3363 . . 3  |-  ( (  seq M (  +  ,  F ) `  N )  e.  {
x  e.  RR  | 
0  <_  x }  <->  ( (  seq M (  +  ,  F ) `
 N )  e.  RR  /\  0  <_ 
(  seq M (  +  ,  F ) `  N ) ) )
2322simprbi 480 . 2  |-  ( (  seq M (  +  ,  F ) `  N )  e.  {
x  e.  RR  | 
0  <_  x }  ->  0  <_  (  seq M (  +  ,  F ) `  N
) )
2420, 23syl 17 1  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   {crab 2916   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    <_ cle 10075   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  serle  12856
  Copyright terms: Public domain W3C validator