MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  serle Structured version   Visualization version   Unicode version

Theorem serle 12856
Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
serge0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
serge0.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
serle.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  RR )
serle.4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  <_  ( G `  k )
)
Assertion
Ref Expression
serle  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  <_ 
(  seq M (  +  ,  G ) `  N ) )
Distinct variable groups:    k, F    k, G    k, M    k, N    ph, k

Proof of Theorem serle
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 serge0.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 vex 3203 . . . . . 6  |-  k  e. 
_V
3 fveq2 6191 . . . . . . . 8  |-  ( x  =  k  ->  ( G `  x )  =  ( G `  k ) )
4 fveq2 6191 . . . . . . . 8  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
53, 4oveq12d 6668 . . . . . . 7  |-  ( x  =  k  ->  (
( G `  x
)  -  ( F `
 x ) )  =  ( ( G `
 k )  -  ( F `  k ) ) )
6 eqid 2622 . . . . . . 7  |-  ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) )  =  ( x  e. 
_V  |->  ( ( G `
 x )  -  ( F `  x ) ) )
7 ovex 6678 . . . . . . 7  |-  ( ( G `  k )  -  ( F `  k ) )  e. 
_V
85, 6, 7fvmpt 6282 . . . . . 6  |-  ( k  e.  _V  ->  (
( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x )
) ) `  k
)  =  ( ( G `  k )  -  ( F `  k ) ) )
92, 8ax-mp 5 . . . . 5  |-  ( ( x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  =  ( ( G `
 k )  -  ( F `  k ) )
10 serle.3 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  RR )
11 serge0.2 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  RR )
1210, 11resubcld 10458 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( ( G `  k )  -  ( F `  k ) )  e.  RR )
139, 12syl5eqel 2705 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  e.  RR )
14 serle.4 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  <_  ( G `  k )
)
1510, 11subge0d 10617 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( 0  <_  ( ( G `
 k )  -  ( F `  k ) )  <->  ( F `  k )  <_  ( G `  k )
) )
1614, 15mpbird 247 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( ( G `  k
)  -  ( F `
 k ) ) )
1716, 9syl6breqr 4695 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x )
) ) `  k
) )
181, 13, 17serge0 12855 . . 3  |-  ( ph  ->  0  <_  (  seq M (  +  , 
( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x )
) ) ) `  N ) )
1910recnd 10068 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k )  e.  CC )
2011recnd 10068 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  e.  CC )
219a1i 11 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
x  e.  _V  |->  ( ( G `  x
)  -  ( F `
 x ) ) ) `  k )  =  ( ( G `
 k )  -  ( F `  k ) ) )
221, 19, 20, 21sersub 12844 . . 3  |-  ( ph  ->  (  seq M (  +  ,  ( x  e.  _V  |->  ( ( G `  x )  -  ( F `  x ) ) ) ) `  N )  =  ( (  seq M (  +  ,  G ) `  N
)  -  (  seq M (  +  ,  F ) `  N
) ) )
2318, 22breqtrd 4679 . 2  |-  ( ph  ->  0  <_  ( (  seq M (  +  ,  G ) `  N
)  -  (  seq M (  +  ,  F ) `  N
) ) )
24 readdcl 10019 . . . . 5  |-  ( ( k  e.  RR  /\  x  e.  RR )  ->  ( k  +  x
)  e.  RR )
2524adantl 482 . . . 4  |-  ( (
ph  /\  ( k  e.  RR  /\  x  e.  RR ) )  -> 
( k  +  x
)  e.  RR )
261, 10, 25seqcl 12821 . . 3  |-  ( ph  ->  (  seq M (  +  ,  G ) `
 N )  e.  RR )
271, 11, 25seqcl 12821 . . 3  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  e.  RR )
2826, 27subge0d 10617 . 2  |-  ( ph  ->  ( 0  <_  (
(  seq M (  +  ,  G ) `  N )  -  (  seq M (  +  ,  F ) `  N
) )  <->  (  seq M (  +  ,  F ) `  N
)  <_  (  seq M (  +  ,  G ) `  N
) ) )
2923, 28mpbid 222 1  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  <_ 
(  seq M (  +  ,  G ) `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    + caddc 9939    <_ cle 10075    - cmin 10266   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802
This theorem is referenced by:  iserle  14390  cvgcmpub  14549  ioombl1lem4  23329  stirlinglem10  40300
  Copyright terms: Public domain W3C validator