MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodrblem Structured version   Visualization version   Unicode version

Theorem prodrblem 14659
Description: Lemma for prodrb 14662. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodrb.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
prodrblem  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  x.  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  x.  ,  F ) )
Distinct variable groups:    A, k    k, F    ph, k
Allowed substitution hints:    B( k)    M( k)    N( k)

Proof of Theorem prodrblem
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 mulid2 10038 . . 3  |-  ( n  e.  CC  ->  (
1  x.  n )  =  n )
21adantl 482 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  CC )  ->  ( 1  x.  n )  =  n )
3 1cnd 10056 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  1  e.  CC )
4 prodrb.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
54adantr 481 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  (
ZZ>= `  M ) )
6 iftrue 4092 . . . . . . . . 9  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  =  B )
76adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  =  B )
8 prodmo.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
98adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  k  e.  A )  ->  B  e.  CC )
107, 9eqeltrd 2701 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
1110ex 450 . . . . . 6  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  e.  CC ) )
12 iffalse 4095 . . . . . . 7  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  =  1 )
13 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
1412, 13syl6eqel 2709 . . . . . 6  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
1511, 14pm2.61d1 171 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
16 prodmo.1 . . . . 5  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
1715, 16fmptd 6385 . . . 4  |-  ( ph  ->  F : ZZ --> CC )
18 uzssz 11707 . . . . 5  |-  ( ZZ>= `  M )  C_  ZZ
1918, 4sseldi 3601 . . . 4  |-  ( ph  ->  N  e.  ZZ )
2017, 19ffvelrnd 6360 . . 3  |-  ( ph  ->  ( F `  N
)  e.  CC )
2120adantr 481 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  ( F `  N )  e.  CC )
22 elfzelz 12342 . . . . 5  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  n  e.  ZZ )
2322adantl 482 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ZZ )
24 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A  C_  ( ZZ>=
`  N ) )
2519zcnd 11483 . . . . . . . . . 10  |-  ( ph  ->  N  e.  CC )
2625adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  CC )
2726adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  N  e.  CC )
28 1cnd 10056 . . . . . . . 8  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  1  e.  CC )
2927, 28npcand 10396 . . . . . . 7  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( ( N  -  1 )  +  1 )  =  N )
3029fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) )  =  (
ZZ>= `  N ) )
3124, 30sseqtr4d 3642 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A  C_  ( ZZ>=
`  ( ( N  -  1 )  +  1 ) ) )
32 fznuz 12422 . . . . . 6  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  -.  n  e.  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) ) )
3332adantl 482 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
3431, 33ssneldd 3606 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  A )
3523, 34eldifd 3585 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ( ZZ  \  A ) )
36 fveq2 6191 . . . . 5  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
3736eqeq1d 2624 . . . 4  |-  ( k  =  n  ->  (
( F `  k
)  =  1  <->  ( F `  n )  =  1 ) )
38 eldifi 3732 . . . . . 6  |-  ( k  e.  ( ZZ  \  A )  ->  k  e.  ZZ )
39 eldifn 3733 . . . . . . . 8  |-  ( k  e.  ( ZZ  \  A )  ->  -.  k  e.  A )
4039, 12syl 17 . . . . . . 7  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  1 )  =  1 )
4140, 13syl6eqel 2709 . . . . . 6  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  1 )  e.  CC )
4216fvmpt2 6291 . . . . . 6  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  1 )  e.  CC )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  1 ) )
4338, 41, 42syl2anc 693 . . . . 5  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
1 ) )
4443, 40eqtrd 2656 . . . 4  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  1 )
4537, 44vtoclga 3272 . . 3  |-  ( n  e.  ( ZZ  \  A )  ->  ( F `  n )  =  1 )
4635, 45syl 17 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  =  1 )
472, 3, 5, 21, 46seqid 12846 1  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  x.  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  x.  ,  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   ifcif 4086    |-> cmpt 4729    |` cres 5116   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  prodrblem2  14661
  Copyright terms: Public domain W3C validator