MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop2 Structured version   Visualization version   Unicode version

Theorem lhop2 23778
Description: L'Hôpital's Rule for limits from the left. If  F and  G are differentiable real functions on  ( A ,  B ), and 
F and  G both approach 0 at  B, and  G ( x ) and  G'  ( x ) are not zero on  ( A ,  B ), and the limit of  F'  ( x )  /  G'  ( x ) at  B is  C, then the limit  F ( x )  /  G ( x ) at  B also exists and equals  C. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop2.a  |-  ( ph  ->  A  e.  RR* )
lhop2.b  |-  ( ph  ->  B  e.  RR )
lhop2.l  |-  ( ph  ->  A  <  B )
lhop2.f  |-  ( ph  ->  F : ( A (,) B ) --> RR )
lhop2.g  |-  ( ph  ->  G : ( A (,) B ) --> RR )
lhop2.if  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
lhop2.ig  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
lhop2.f0  |-  ( ph  ->  0  e.  ( F lim
CC  B ) )
lhop2.g0  |-  ( ph  ->  0  e.  ( G lim
CC  B ) )
lhop2.gn0  |-  ( ph  ->  -.  0  e.  ran  G )
lhop2.gd0  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  G
) )
lhop2.c  |-  ( ph  ->  C  e.  ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) lim CC  B ) )
Assertion
Ref Expression
lhop2  |-  ( ph  ->  C  e.  ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) lim CC  B ) )
Distinct variable groups:    z, A    z, B    z, C    ph, z    z, F    z, G

Proof of Theorem lhop2
Dummy variables  x  a  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qssre 11798 . . 3  |-  QQ  C_  RR
2 lhop2.a . . . 4  |-  ( ph  ->  A  e.  RR* )
3 lhop2.b . . . . 5  |-  ( ph  ->  B  e.  RR )
43rexrd 10089 . . . 4  |-  ( ph  ->  B  e.  RR* )
5 lhop2.l . . . 4  |-  ( ph  ->  A  <  B )
6 qbtwnxr 12031 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  E. a  e.  QQ  ( A  < 
a  /\  a  <  B ) )
72, 4, 5, 6syl3anc 1326 . . 3  |-  ( ph  ->  E. a  e.  QQ  ( A  <  a  /\  a  <  B ) )
8 ssrexv 3667 . . 3  |-  ( QQ  C_  RR  ->  ( E. a  e.  QQ  ( A  <  a  /\  a  <  B )  ->  E. a  e.  RR  ( A  < 
a  /\  a  <  B ) ) )
91, 7, 8mpsyl 68 . 2  |-  ( ph  ->  E. a  e.  RR  ( A  <  a  /\  a  <  B ) )
10 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  z  e.  ( a (,) B
) )
11 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  a  e.  RR )
1211adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  a  e.  RR )
133ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  B  e.  RR )
14 elioore 12205 . . . . . . . 8  |-  ( z  e.  ( a (,) B )  ->  z  e.  RR )
1514adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  z  e.  RR )
16 iooneg 12292 . . . . . . 7  |-  ( ( a  e.  RR  /\  B  e.  RR  /\  z  e.  RR )  ->  (
z  e.  ( a (,) B )  <->  -u z  e.  ( -u B (,) -u a ) ) )
1712, 13, 15, 16syl3anc 1326 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  (
z  e.  ( a (,) B )  <->  -u z  e.  ( -u B (,) -u a ) ) )
1810, 17mpbid 222 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  -u z  e.  ( -u B (,) -u a ) )
1918adantrr 753 . . . 4  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  ( z  e.  ( a (,) B )  /\  -u z  =/=  -u B ) )  ->  -u z  e.  (
-u B (,) -u a
) )
20 lhop2.f . . . . . . . 8  |-  ( ph  ->  F : ( A (,) B ) --> RR )
2120ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  F : ( A (,) B ) --> RR )
22 elioore 12205 . . . . . . . . . . . . 13  |-  ( x  e.  ( -u B (,) -u a )  ->  x  e.  RR )
2322adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  x  e.  RR )
2423recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  x  e.  CC )
2524negnegd 10383 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  -u -u x  =  x
)
26 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  x  e.  ( -u B (,) -u a ) )
2725, 26eqeltrd 2701 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  -u -u x  e.  ( -u B (,) -u a
) )
2811adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
a  e.  RR )
293ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  B  e.  RR )
3023renegcld 10457 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  -u x  e.  RR )
31 iooneg 12292 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  B  e.  RR  /\  -u x  e.  RR )  ->  ( -u x  e.  ( a (,) B )  <->  -u -u x  e.  ( -u B (,) -u a ) ) )
3228, 29, 30, 31syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( -u x  e.  ( a (,) B )  <->  -u -u x  e.  (
-u B (,) -u a
) ) )
3327, 32mpbird 247 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  -u x  e.  ( a (,) B ) )
342adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  A  e.  RR* )
35 simprrl 804 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  A  <  a
)
3611rexrd 10089 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  a  e.  RR* )
37 xrltle 11982 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  a  e.  RR* )  ->  ( A  <  a  ->  A  <_  a ) )
3834, 36, 37syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( A  < 
a  ->  A  <_  a ) )
3935, 38mpd 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  A  <_  a
)
40 iooss1 12210 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  A  <_  a )  ->  (
a (,) B ) 
C_  ( A (,) B ) )
4134, 39, 40syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( a (,) B )  C_  ( A (,) B ) )
4241sselda 3603 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  -u x  e.  ( a (,) B
) )  ->  -u x  e.  ( A (,) B
) )
4333, 42syldan 487 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  -u x  e.  ( A (,) B ) )
4421, 43ffvelrnd 6360 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( F `  -u x
)  e.  RR )
4544recnd 10068 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( F `  -u x
)  e.  CC )
46 lhop2.g . . . . . . . 8  |-  ( ph  ->  G : ( A (,) B ) --> RR )
4746ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  G : ( A (,) B ) --> RR )
4847, 43ffvelrnd 6360 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( G `  -u x
)  e.  RR )
4948recnd 10068 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( G `  -u x
)  e.  CC )
50 lhop2.gn0 . . . . . . 7  |-  ( ph  ->  -.  0  e.  ran  G )
5150ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  -.  0  e.  ran  G )
5246adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  G : ( A (,) B ) --> RR )
53 ax-resscn 9993 . . . . . . . . . . . 12  |-  RR  C_  CC
54 fss 6056 . . . . . . . . . . . 12  |-  ( ( G : ( A (,) B ) --> RR 
/\  RR  C_  CC )  ->  G : ( A (,) B ) --> CC )
5552, 53, 54sylancl 694 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  G : ( A (,) B ) --> CC )
5655adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  G : ( A (,) B ) --> CC )
57 ffn 6045 . . . . . . . . . 10  |-  ( G : ( A (,) B ) --> CC  ->  G  Fn  ( A (,) B ) )
5856, 57syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  G  Fn  ( A (,) B ) )
59 fnfvelrn 6356 . . . . . . . . 9  |-  ( ( G  Fn  ( A (,) B )  /\  -u x  e.  ( A (,) B ) )  ->  ( G `  -u x )  e.  ran  G )
6058, 43, 59syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( G `  -u x
)  e.  ran  G
)
61 eleq1 2689 . . . . . . . 8  |-  ( ( G `  -u x
)  =  0  -> 
( ( G `  -u x )  e.  ran  G  <->  0  e.  ran  G
) )
6260, 61syl5ibcom 235 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( G `  -u x )  =  0  ->  0  e.  ran  G ) )
6362necon3bd 2808 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( -.  0  e. 
ran  G  ->  ( G `
 -u x )  =/=  0 ) )
6451, 63mpd 15 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( G `  -u x
)  =/=  0 )
6545, 49, 64divcld 10801 . . . 4  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( F `  -u x )  /  ( G `  -u x ) )  e.  CC )
66 limcresi 23649 . . . . . 6  |-  ( ( z  e.  RR  |->  -u z ) lim CC  B ) 
C_  ( ( ( z  e.  RR  |->  -u z )  |`  (
a (,) B ) ) lim CC  B )
67 ioossre 12235 . . . . . . . 8  |-  ( a (,) B )  C_  RR
68 resmpt 5449 . . . . . . . 8  |-  ( ( a (,) B ) 
C_  RR  ->  ( ( z  e.  RR  |->  -u z )  |`  (
a (,) B ) )  =  ( z  e.  ( a (,) B )  |->  -u z
) )
6967, 68ax-mp 5 . . . . . . 7  |-  ( ( z  e.  RR  |->  -u z )  |`  (
a (,) B ) )  =  ( z  e.  ( a (,) B )  |->  -u z
)
7069oveq1i 6660 . . . . . 6  |-  ( ( ( z  e.  RR  |->  -u z )  |`  (
a (,) B ) ) lim CC  B )  =  ( ( z  e.  ( a (,) B )  |->  -u z
) lim CC  B )
7166, 70sseqtri 3637 . . . . 5  |-  ( ( z  e.  RR  |->  -u z ) lim CC  B ) 
C_  ( ( z  e.  ( a (,) B )  |->  -u z
) lim CC  B )
72 eqid 2622 . . . . . . . 8  |-  ( z  e.  RR  |->  -u z
)  =  ( z  e.  RR  |->  -u z
)
7372negcncf 22721 . . . . . . 7  |-  ( RR  C_  CC  ->  ( z  e.  RR  |->  -u z )  e.  ( RR -cn-> CC ) )
7453, 73mp1i 13 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( z  e.  RR  |->  -u z )  e.  ( RR -cn-> CC ) )
753adantr 481 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  B  e.  RR )
76 negeq 10273 . . . . . 6  |-  ( z  =  B  ->  -u z  =  -u B )
7774, 75, 76cnmptlimc 23654 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -u B  e.  ( ( z  e.  RR  |->  -u z ) lim CC  B
) )
7871, 77sseldi 3601 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -u B  e.  ( ( z  e.  ( a (,) B ) 
|->  -u z ) lim CC  B ) )
7975renegcld 10457 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -u B  e.  RR )
8011renegcld 10457 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -u a  e.  RR )
8180rexrd 10089 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -u a  e.  RR* )
82 simprrr 805 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  a  <  B
)
8311, 75ltnegd 10605 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( a  < 
B  <->  -u B  <  -u a
) )
8482, 83mpbid 222 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -u B  <  -u a
)
85 eqid 2622 . . . . . . 7  |-  ( x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) )  =  ( x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) )
8644, 85fmptd 6385 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) : ( -u B (,) -u a ) --> RR )
87 eqid 2622 . . . . . . 7  |-  ( x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) )  =  ( x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) )
8848, 87fmptd 6385 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) : ( -u B (,) -u a ) --> RR )
89 reelprrecn 10028 . . . . . . . . . . 11  |-  RR  e.  { RR ,  CC }
9089a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  RR  e.  { RR ,  CC } )
91 neg1cn 11124 . . . . . . . . . . 11  |-  -u 1  e.  CC
9291a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  -u 1  e.  CC )
9320adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  F : ( A (,) B ) --> RR )
9493ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  y  e.  ( A (,) B
) )  ->  ( F `  y )  e.  RR )
9594recnd 10068 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  y  e.  ( A (,) B
) )  ->  ( F `  y )  e.  CC )
96 fvexd 6203 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  y  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  y )  e.  _V )
97 1cnd 10056 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
1  e.  CC )
98 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  RR )  ->  x  e.  RR )
9998recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  RR )  ->  x  e.  CC )
100 1cnd 10056 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  RR )  ->  1  e.  CC )
10190dvmptid 23720 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  ( x  e.  RR  |->  x ) )  =  ( x  e.  RR  |->  1 ) )
102 ioossre 12235 . . . . . . . . . . . . 13  |-  ( -u B (,) -u a )  C_  RR
103102a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( -u B (,) -u a )  C_  RR )
104 eqid 2622 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
105104tgioo2 22606 . . . . . . . . . . . 12  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
106 iooretop 22569 . . . . . . . . . . . . 13  |-  ( -u B (,) -u a )  e.  ( topGen `  ran  (,) )
107106a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( -u B (,) -u a )  e.  ( topGen `  ran  (,) )
)
10890, 99, 100, 101, 103, 105, 104, 107dvmptres 23726 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  x ) )  =  ( x  e.  ( -u B (,) -u a )  |->  1 ) )
10990, 24, 97, 108dvmptneg 23729 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  -u x ) )  =  ( x  e.  ( -u B (,) -u a )  |->  -u 1
) )
11093feqmptd 6249 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  F  =  ( y  e.  ( A (,) B )  |->  ( F `  y ) ) )
111110oveq2d 6666 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  F )  =  ( RR  _D  ( y  e.  ( A (,) B )  |->  ( F `
 y ) ) ) )
112 dvf 23671 . . . . . . . . . . . . 13  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
113 lhop2.if . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
114113adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
115114feq2d 6031 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC  <->  ( RR  _D  F ) : ( A (,) B ) --> CC ) )
116112, 115mpbii 223 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  F ) : ( A (,) B ) --> CC )
117116feqmptd 6249 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  F )  =  ( y  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  y )
) )
118111, 117eqtr3d 2658 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  ( y  e.  ( A (,) B ) 
|->  ( F `  y
) ) )  =  ( y  e.  ( A (,) B ) 
|->  ( ( RR  _D  F ) `  y
) ) )
119 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  -u x  ->  ( F `  y )  =  ( F `  -u x ) )
120 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  -u x  ->  (
( RR  _D  F
) `  y )  =  ( ( RR 
_D  F ) `  -u x ) )
12190, 90, 43, 92, 95, 96, 109, 118, 119, 120dvmptco 23735 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( F `  -u x ) ) )  =  ( x  e.  ( -u B (,) -u a )  |->  ( ( ( RR  _D  F
) `  -u x )  x.  -u 1 ) ) )
122116adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( RR  _D  F
) : ( A (,) B ) --> CC )
123122, 43ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( RR  _D  F ) `  -u x
)  e.  CC )
124123, 92mulcomd 10061 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( ( RR 
_D  F ) `  -u x )  x.  -u 1
)  =  ( -u
1  x.  ( ( RR  _D  F ) `
 -u x ) ) )
125123mulm1d 10482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( -u 1  x.  (
( RR  _D  F
) `  -u x ) )  =  -u (
( RR  _D  F
) `  -u x ) )
126124, 125eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( ( RR 
_D  F ) `  -u x )  x.  -u 1
)  =  -u (
( RR  _D  F
) `  -u x ) )
127126mpteq2dva 4744 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( x  e.  ( -u B (,) -u a )  |->  ( ( ( RR  _D  F
) `  -u x )  x.  -u 1 ) )  =  ( x  e.  ( -u B (,) -u a )  |->  -u (
( RR  _D  F
) `  -u x ) ) )
128121, 127eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( F `  -u x ) ) )  =  ( x  e.  ( -u B (,) -u a )  |->  -u (
( RR  _D  F
) `  -u x ) ) )
129128dmeqd 5326 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  dom  ( RR  _D  ( x  e.  (
-u B (,) -u a
)  |->  ( F `  -u x ) ) )  =  dom  ( x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  F ) `  -u x
) ) )
130 negex 10279 . . . . . . . 8  |-  -u (
( RR  _D  F
) `  -u x )  e.  _V
131 eqid 2622 . . . . . . . 8  |-  ( x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  F ) `  -u x
) )  =  ( x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  F ) `  -u x
) )
132130, 131dmmpti 6023 . . . . . . 7  |-  dom  (
x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  F ) `  -u x
) )  =  (
-u B (,) -u a
)
133129, 132syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  dom  ( RR  _D  ( x  e.  (
-u B (,) -u a
)  |->  ( F `  -u x ) ) )  =  ( -u B (,) -u a ) )
13452ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  y  e.  ( A (,) B
) )  ->  ( G `  y )  e.  RR )
135134recnd 10068 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  y  e.  ( A (,) B
) )  ->  ( G `  y )  e.  CC )
136 fvexd 6203 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  y  e.  ( A (,) B
) )  ->  (
( RR  _D  G
) `  y )  e.  _V )
13752feqmptd 6249 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  G  =  ( y  e.  ( A (,) B )  |->  ( G `  y ) ) )
138137oveq2d 6666 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  G )  =  ( RR  _D  ( y  e.  ( A (,) B )  |->  ( G `
 y ) ) ) )
139 dvf 23671 . . . . . . . . . . . . 13  |-  ( RR 
_D  G ) : dom  ( RR  _D  G ) --> CC
140 lhop2.ig . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
141140adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
142141feq2d 6031 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( RR 
_D  G ) : dom  ( RR  _D  G ) --> CC  <->  ( RR  _D  G ) : ( A (,) B ) --> CC ) )
143139, 142mpbii 223 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  G ) : ( A (,) B ) --> CC )
144143feqmptd 6249 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  G )  =  ( y  e.  ( A (,) B )  |->  ( ( RR  _D  G
) `  y )
) )
145138, 144eqtr3d 2658 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  ( y  e.  ( A (,) B ) 
|->  ( G `  y
) ) )  =  ( y  e.  ( A (,) B ) 
|->  ( ( RR  _D  G ) `  y
) ) )
146 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  -u x  ->  ( G `  y )  =  ( G `  -u x ) )
147 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  -u x  ->  (
( RR  _D  G
) `  y )  =  ( ( RR 
_D  G ) `  -u x ) )
14890, 90, 43, 92, 135, 136, 109, 145, 146, 147dvmptco 23735 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( G `  -u x ) ) )  =  ( x  e.  ( -u B (,) -u a )  |->  ( ( ( RR  _D  G
) `  -u x )  x.  -u 1 ) ) )
149143adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( RR  _D  G
) : ( A (,) B ) --> CC )
150149, 43ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( RR  _D  G ) `  -u x
)  e.  CC )
151150, 92mulcomd 10061 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( ( RR 
_D  G ) `  -u x )  x.  -u 1
)  =  ( -u
1  x.  ( ( RR  _D  G ) `
 -u x ) ) )
152150mulm1d 10482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( -u 1  x.  (
( RR  _D  G
) `  -u x ) )  =  -u (
( RR  _D  G
) `  -u x ) )
153151, 152eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( ( RR 
_D  G ) `  -u x )  x.  -u 1
)  =  -u (
( RR  _D  G
) `  -u x ) )
154153mpteq2dva 4744 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( x  e.  ( -u B (,) -u a )  |->  ( ( ( RR  _D  G
) `  -u x )  x.  -u 1 ) )  =  ( x  e.  ( -u B (,) -u a )  |->  -u (
( RR  _D  G
) `  -u x ) ) )
155148, 154eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( G `  -u x ) ) )  =  ( x  e.  ( -u B (,) -u a )  |->  -u (
( RR  _D  G
) `  -u x ) ) )
156155dmeqd 5326 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  dom  ( RR  _D  ( x  e.  (
-u B (,) -u a
)  |->  ( G `  -u x ) ) )  =  dom  ( x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  G ) `  -u x
) ) )
157 negex 10279 . . . . . . . 8  |-  -u (
( RR  _D  G
) `  -u x )  e.  _V
158 eqid 2622 . . . . . . . 8  |-  ( x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  G ) `  -u x
) )  =  ( x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  G ) `  -u x
) )
159157, 158dmmpti 6023 . . . . . . 7  |-  dom  (
x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  G ) `  -u x
) )  =  (
-u B (,) -u a
)
160156, 159syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  dom  ( RR  _D  ( x  e.  (
-u B (,) -u a
)  |->  ( G `  -u x ) ) )  =  ( -u B (,) -u a ) )
16143adantrr 753 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  ( x  e.  ( -u B (,) -u a )  /\  -u x  =/=  B ) )  ->  -u x  e.  ( A (,) B
) )
162 limcresi 23649 . . . . . . . . 9  |-  ( ( x  e.  RR  |->  -u x ) lim CC  -u B
)  C_  ( (
( x  e.  RR  |->  -u x )  |`  ( -u B (,) -u a
) ) lim CC  -u B
)
163 resmpt 5449 . . . . . . . . . . 11  |-  ( (
-u B (,) -u a
)  C_  RR  ->  ( ( x  e.  RR  |->  -u x )  |`  ( -u B (,) -u a
) )  =  ( x  e.  ( -u B (,) -u a )  |->  -u x ) )
164102, 163ax-mp 5 . . . . . . . . . 10  |-  ( ( x  e.  RR  |->  -u x )  |`  ( -u B (,) -u a
) )  =  ( x  e.  ( -u B (,) -u a )  |->  -u x )
165164oveq1i 6660 . . . . . . . . 9  |-  ( ( ( x  e.  RR  |->  -u x )  |`  ( -u B (,) -u a
) ) lim CC  -u B
)  =  ( ( x  e.  ( -u B (,) -u a )  |->  -u x ) lim CC  -u B
)
166162, 165sseqtri 3637 . . . . . . . 8  |-  ( ( x  e.  RR  |->  -u x ) lim CC  -u B
)  C_  ( (
x  e.  ( -u B (,) -u a )  |->  -u x ) lim CC  -u B
)
16775recnd 10068 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  B  e.  CC )
168167negnegd 10383 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -u -u B  =  B )
169 eqid 2622 . . . . . . . . . . . 12  |-  ( x  e.  RR  |->  -u x
)  =  ( x  e.  RR  |->  -u x
)
170169negcncf 22721 . . . . . . . . . . 11  |-  ( RR  C_  CC  ->  ( x  e.  RR  |->  -u x )  e.  ( RR -cn-> CC ) )
17153, 170mp1i 13 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( x  e.  RR  |->  -u x )  e.  ( RR -cn-> CC ) )
172 negeq 10273 . . . . . . . . . 10  |-  ( x  =  -u B  ->  -u x  =  -u -u B )
173171, 79, 172cnmptlimc 23654 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -u -u B  e.  ( ( x  e.  RR  |->  -u x ) lim CC  -u B
) )
174168, 173eqeltrrd 2702 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  B  e.  ( ( x  e.  RR  |->  -u x ) lim CC  -u B
) )
175166, 174sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  B  e.  ( ( x  e.  (
-u B (,) -u a
)  |->  -u x ) lim CC  -u B ) )
176 lhop2.f0 . . . . . . . . 9  |-  ( ph  ->  0  e.  ( F lim
CC  B ) )
177176adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  0  e.  ( F lim CC  B ) )
178110oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( F lim CC  B )  =  ( ( y  e.  ( A (,) B ) 
|->  ( F `  y
) ) lim CC  B
) )
179177, 178eleqtrd 2703 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  0  e.  ( ( y  e.  ( A (,) B ) 
|->  ( F `  y
) ) lim CC  B
) )
180 eliooord 12233 . . . . . . . . . . . . . 14  |-  ( x  e.  ( -u B (,) -u a )  -> 
( -u B  <  x  /\  x  <  -u a
) )
181180adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( -u B  <  x  /\  x  <  -u a
) )
182181simpld 475 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  -u B  <  x )
18329, 23, 182ltnegcon1d 10607 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  -u x  <  B )
18430, 183ltned 10173 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  -u x  =/=  B )
185184neneqd 2799 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  -.  -u x  =  B )
186185pm2.21d 118 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( -u x  =  B  ->  ( F `  -u x )  =  0 ) )
187186impr 649 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  ( x  e.  ( -u B (,) -u a )  /\  -u x  =  B ) )  ->  ( F `  -u x )  =  0 )
188161, 95, 175, 179, 119, 187limcco 23657 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  0  e.  ( ( x  e.  (
-u B (,) -u a
)  |->  ( F `  -u x ) ) lim CC  -u B ) )
189 lhop2.g0 . . . . . . . . 9  |-  ( ph  ->  0  e.  ( G lim
CC  B ) )
190189adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  0  e.  ( G lim CC  B ) )
191137oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( G lim CC  B )  =  ( ( y  e.  ( A (,) B ) 
|->  ( G `  y
) ) lim CC  B
) )
192190, 191eleqtrd 2703 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  0  e.  ( ( y  e.  ( A (,) B ) 
|->  ( G `  y
) ) lim CC  B
) )
193185pm2.21d 118 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( -u x  =  B  ->  ( G `  -u x )  =  0 ) )
194193impr 649 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  ( x  e.  ( -u B (,) -u a )  /\  -u x  =  B ) )  ->  ( G `  -u x )  =  0 )
195161, 135, 175, 192, 146, 194limcco 23657 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  0  e.  ( ( x  e.  (
-u B (,) -u a
)  |->  ( G `  -u x ) ) lim CC  -u B ) )
19660, 87fmptd 6385 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) : ( -u B (,) -u a ) --> ran 
G )
197 frn 6053 . . . . . . . 8  |-  ( ( x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) : (
-u B (,) -u a
) --> ran  G  ->  ran  ( x  e.  (
-u B (,) -u a
)  |->  ( G `  -u x ) )  C_  ran  G )
198196, 197syl 17 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ran  ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) 
C_  ran  G )
19950adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -.  0  e.  ran  G )
200198, 199ssneldd 3606 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -.  0  e.  ran  ( x  e.  (
-u B (,) -u a
)  |->  ( G `  -u x ) ) )
201 lhop2.gd0 . . . . . . . 8  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  G
) )
202201adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -.  0  e.  ran  ( RR  _D  G
) )
203155rneqd 5353 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ran  ( RR  _D  ( x  e.  (
-u B (,) -u a
)  |->  ( G `  -u x ) ) )  =  ran  ( x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  G ) `  -u x
) ) )
204203eleq2d 2687 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( 0  e. 
ran  ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( G `  -u x ) ) )  <->  0  e.  ran  (
x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  G ) `  -u x
) ) ) )
205158, 157elrnmpti 5376 . . . . . . . . 9  |-  ( 0  e.  ran  ( x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  G ) `  -u x
) )  <->  E. x  e.  ( -u B (,) -u a ) 0  = 
-u ( ( RR 
_D  G ) `  -u x ) )
206 eqcom 2629 . . . . . . . . . . 11  |-  ( 0  =  -u ( ( RR 
_D  G ) `  -u x )  <->  -u ( ( RR  _D  G ) `
 -u x )  =  0 )
207150negeq0d 10384 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( ( RR 
_D  G ) `  -u x )  =  0  <->  -u ( ( RR  _D  G ) `  -u x
)  =  0 ) )
208 ffn 6045 . . . . . . . . . . . . . . 15  |-  ( ( RR  _D  G ) : ( A (,) B ) --> CC  ->  ( RR  _D  G )  Fn  ( A (,) B ) )
209149, 208syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( RR  _D  G
)  Fn  ( A (,) B ) )
210 fnfvelrn 6356 . . . . . . . . . . . . . 14  |-  ( ( ( RR  _D  G
)  Fn  ( A (,) B )  /\  -u x  e.  ( A (,) B ) )  ->  ( ( RR 
_D  G ) `  -u x )  e.  ran  ( RR  _D  G
) )
211209, 43, 210syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( RR  _D  G ) `  -u x
)  e.  ran  ( RR  _D  G ) )
212 eleq1 2689 . . . . . . . . . . . . 13  |-  ( ( ( RR  _D  G
) `  -u x )  =  0  ->  (
( ( RR  _D  G ) `  -u x
)  e.  ran  ( RR  _D  G )  <->  0  e.  ran  ( RR  _D  G
) ) )
213211, 212syl5ibcom 235 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( ( RR 
_D  G ) `  -u x )  =  0  ->  0  e.  ran  ( RR  _D  G
) ) )
214207, 213sylbird 250 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( -u ( ( RR 
_D  G ) `  -u x )  =  0  ->  0  e.  ran  ( RR  _D  G
) ) )
215206, 214syl5bi 232 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( 0  =  -u ( ( RR  _D  G ) `  -u x
)  ->  0  e.  ran  ( RR  _D  G
) ) )
216215rexlimdva 3031 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( E. x  e.  ( -u B (,) -u a ) 0  = 
-u ( ( RR 
_D  G ) `  -u x )  ->  0  e.  ran  ( RR  _D  G ) ) )
217205, 216syl5bi 232 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( 0  e. 
ran  ( x  e.  ( -u B (,) -u a )  |->  -u (
( RR  _D  G
) `  -u x ) )  ->  0  e.  ran  ( RR  _D  G
) ) )
218204, 217sylbid 230 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( 0  e. 
ran  ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( G `  -u x ) ) )  ->  0  e.  ran  ( RR  _D  G
) ) )
219202, 218mtod 189 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -.  0  e.  ran  ( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) ) )
220116ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  z )  e.  CC )
221143ffvelrnda 6359 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  (
( RR  _D  G
) `  z )  e.  CC )
222201ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  -.  0  e.  ran  ( RR 
_D  G ) )
223143, 208syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( RR  _D  G )  Fn  ( A (,) B ) )
224 fnfvelrn 6356 . . . . . . . . . . . . 13  |-  ( ( ( RR  _D  G
)  Fn  ( A (,) B )  /\  z  e.  ( A (,) B ) )  -> 
( ( RR  _D  G ) `  z
)  e.  ran  ( RR  _D  G ) )
225223, 224sylan 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  (
( RR  _D  G
) `  z )  e.  ran  ( RR  _D  G ) )
226 eleq1 2689 . . . . . . . . . . . 12  |-  ( ( ( RR  _D  G
) `  z )  =  0  ->  (
( ( RR  _D  G ) `  z
)  e.  ran  ( RR  _D  G )  <->  0  e.  ran  ( RR  _D  G
) ) )
227225, 226syl5ibcom 235 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  (
( ( RR  _D  G ) `  z
)  =  0  -> 
0  e.  ran  ( RR  _D  G ) ) )
228227necon3bd 2808 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  ( -.  0  e.  ran  ( RR  _D  G
)  ->  ( ( RR  _D  G ) `  z )  =/=  0
) )
229222, 228mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  (
( RR  _D  G
) `  z )  =/=  0 )
230220, 221, 229divcld 10801 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  (
( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) )  e.  CC )
231 lhop2.c . . . . . . . . 9  |-  ( ph  ->  C  e.  ( ( z  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) ) ) lim CC  B ) )
232231adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  C  e.  ( ( z  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  z )  /  (
( RR  _D  G
) `  z )
) ) lim CC  B
) )
233 fveq2 6191 . . . . . . . . 9  |-  ( z  =  -u x  ->  (
( RR  _D  F
) `  z )  =  ( ( RR 
_D  F ) `  -u x ) )
234 fveq2 6191 . . . . . . . . 9  |-  ( z  =  -u x  ->  (
( RR  _D  G
) `  z )  =  ( ( RR 
_D  G ) `  -u x ) )
235233, 234oveq12d 6668 . . . . . . . 8  |-  ( z  =  -u x  ->  (
( ( RR  _D  F ) `  z
)  /  ( ( RR  _D  G ) `
 z ) )  =  ( ( ( RR  _D  F ) `
 -u x )  / 
( ( RR  _D  G ) `  -u x
) ) )
236185pm2.21d 118 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( -u x  =  B  ->  ( ( ( RR  _D  F ) `
 -u x )  / 
( ( RR  _D  G ) `  -u x
) )  =  C ) )
237236impr 649 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  ( x  e.  ( -u B (,) -u a )  /\  -u x  =  B ) )  ->  ( (
( RR  _D  F
) `  -u x )  /  ( ( RR 
_D  G ) `  -u x ) )  =  C )
238161, 230, 175, 232, 235, 237limcco 23657 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  C  e.  ( ( x  e.  (
-u B (,) -u a
)  |->  ( ( ( RR  _D  F ) `
 -u x )  / 
( ( RR  _D  G ) `  -u x
) ) ) lim CC  -u B ) )
239 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ x RR
240 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ x  _D
241 nfmpt1 4747 . . . . . . . . . . . . 13  |-  F/_ x
( x  e.  (
-u B (,) -u a
)  |->  ( F `  -u x ) )
242239, 240, 241nfov 6676 . . . . . . . . . . . 12  |-  F/_ x
( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) ) )
243 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ x
y
244242, 243nffv 6198 . . . . . . . . . . 11  |-  F/_ x
( ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( F `  -u x ) ) ) `
 y )
245 nfcv 2764 . . . . . . . . . . 11  |-  F/_ x  /
246 nfmpt1 4747 . . . . . . . . . . . . 13  |-  F/_ x
( x  e.  (
-u B (,) -u a
)  |->  ( G `  -u x ) )
247239, 240, 246nfov 6676 . . . . . . . . . . . 12  |-  F/_ x
( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) )
248247, 243nffv 6198 . . . . . . . . . . 11  |-  F/_ x
( ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( G `  -u x ) ) ) `
 y )
249244, 245, 248nfov 6676 . . . . . . . . . 10  |-  F/_ x
( ( ( RR 
_D  ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) ) `  y )  /  ( ( RR 
_D  ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) ) `  y ) )
250 nfcv 2764 . . . . . . . . . 10  |-  F/_ y
( ( ( RR 
_D  ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) ) `  x )  /  ( ( RR 
_D  ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) ) `  x ) )
251 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) ) ) `  y )  =  ( ( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) ) ) `  x ) )
252 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) ) `  y )  =  ( ( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) ) `  x ) )
253251, 252oveq12d 6668 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( F `  -u x ) ) ) `
 y )  / 
( ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( G `  -u x ) ) ) `
 y ) )  =  ( ( ( RR  _D  ( x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) ) ) `  x )  /  (
( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) ) `  x ) ) )
254249, 250, 253cbvmpt 4749 . . . . . . . . 9  |-  ( y  e.  ( -u B (,) -u a )  |->  ( ( ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( F `  -u x ) ) ) `
 y )  / 
( ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( G `  -u x ) ) ) `
 y ) ) )  =  ( x  e.  ( -u B (,) -u a )  |->  ( ( ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( F `  -u x ) ) ) `
 x )  / 
( ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( G `  -u x ) ) ) `
 x ) ) )
255128fveq1d 6193 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( RR 
_D  ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) ) `  x )  =  ( ( x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  F ) `  -u x
) ) `  x
) )
256131fvmpt2 6291 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( -u B (,) -u a )  /\  -u ( ( RR  _D  F ) `  -u x
)  e.  _V )  ->  ( ( x  e.  ( -u B (,) -u a )  |->  -u (
( RR  _D  F
) `  -u x ) ) `  x )  =  -u ( ( RR 
_D  F ) `  -u x ) )
257130, 256mpan2 707 . . . . . . . . . . . . 13  |-  ( x  e.  ( -u B (,) -u a )  -> 
( ( x  e.  ( -u B (,) -u a )  |->  -u (
( RR  _D  F
) `  -u x ) ) `  x )  =  -u ( ( RR 
_D  F ) `  -u x ) )
258255, 257sylan9eq 2676 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( F `  -u x ) ) ) `
 x )  = 
-u ( ( RR 
_D  F ) `  -u x ) )
259155fveq1d 6193 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( RR 
_D  ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) ) `  x )  =  ( ( x  e.  ( -u B (,) -u a )  |->  -u ( ( RR  _D  G ) `  -u x
) ) `  x
) )
260158fvmpt2 6291 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( -u B (,) -u a )  /\  -u ( ( RR  _D  G ) `  -u x
)  e.  _V )  ->  ( ( x  e.  ( -u B (,) -u a )  |->  -u (
( RR  _D  G
) `  -u x ) ) `  x )  =  -u ( ( RR 
_D  G ) `  -u x ) )
261157, 260mpan2 707 . . . . . . . . . . . . 13  |-  ( x  e.  ( -u B (,) -u a )  -> 
( ( x  e.  ( -u B (,) -u a )  |->  -u (
( RR  _D  G
) `  -u x ) ) `  x )  =  -u ( ( RR 
_D  G ) `  -u x ) )
262259, 261sylan9eq 2676 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( G `  -u x ) ) ) `
 x )  = 
-u ( ( RR 
_D  G ) `  -u x ) )
263258, 262oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( ( RR 
_D  ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) ) `  x )  /  ( ( RR 
_D  ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) ) `  x ) )  =  ( -u ( ( RR  _D  F ) `  -u x
)  /  -u (
( RR  _D  G
) `  -u x ) ) )
264201ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  ->  -.  0  e.  ran  ( RR  _D  G
) )
265213necon3bd 2808 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( -.  0  e. 
ran  ( RR  _D  G )  ->  (
( RR  _D  G
) `  -u x )  =/=  0 ) )
266264, 265mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( RR  _D  G ) `  -u x
)  =/=  0 )
267123, 150, 266div2negd 10816 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( -u ( ( RR 
_D  F ) `  -u x )  /  -u (
( RR  _D  G
) `  -u x ) )  =  ( ( ( RR  _D  F
) `  -u x )  /  ( ( RR 
_D  G ) `  -u x ) ) )
268263, 267eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( ( RR 
_D  ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) ) `  x )  /  ( ( RR 
_D  ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) ) `  x ) )  =  ( ( ( RR  _D  F
) `  -u x )  /  ( ( RR 
_D  G ) `  -u x ) ) )
269268mpteq2dva 4744 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( x  e.  ( -u B (,) -u a )  |->  ( ( ( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) ) ) `  x )  /  (
( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) ) `  x ) ) )  =  ( x  e.  ( -u B (,) -u a )  |->  ( ( ( RR  _D  F
) `  -u x )  /  ( ( RR 
_D  G ) `  -u x ) ) ) )
270254, 269syl5eq 2668 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( y  e.  ( -u B (,) -u a )  |->  ( ( ( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) ) ) `  y )  /  (
( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) ) `  y ) ) )  =  ( x  e.  ( -u B (,) -u a )  |->  ( ( ( RR  _D  F
) `  -u x )  /  ( ( RR 
_D  G ) `  -u x ) ) ) )
271270oveq1d 6665 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( y  e.  ( -u B (,) -u a )  |->  ( ( ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( F `  -u x ) ) ) `
 y )  / 
( ( RR  _D  ( x  e.  ( -u B (,) -u a
)  |->  ( G `  -u x ) ) ) `
 y ) ) ) lim CC  -u B
)  =  ( ( x  e.  ( -u B (,) -u a )  |->  ( ( ( RR  _D  F ) `  -u x
)  /  ( ( RR  _D  G ) `
 -u x ) ) ) lim CC  -u B
) )
272238, 271eleqtrrd 2704 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  C  e.  ( ( y  e.  (
-u B (,) -u a
)  |->  ( ( ( RR  _D  ( x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) ) ) `  y )  /  (
( RR  _D  (
x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) ) `  y ) ) ) lim
CC  -u B ) )
27379, 81, 84, 86, 88, 133, 160, 188, 195, 200, 219, 272lhop1 23777 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  C  e.  ( ( y  e.  (
-u B (,) -u a
)  |->  ( ( ( x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) ) `  y
)  /  ( ( x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) `  y
) ) ) lim CC  -u B ) )
274 nffvmpt1 6199 . . . . . . . . 9  |-  F/_ x
( ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) `
 y )
275 nffvmpt1 6199 . . . . . . . . 9  |-  F/_ x
( ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) `
 y )
276274, 245, 275nfov 6676 . . . . . . . 8  |-  F/_ x
( ( ( x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) ) `  y
)  /  ( ( x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) `  y
) )
277 nfcv 2764 . . . . . . . 8  |-  F/_ y
( ( ( x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) ) `  x
)  /  ( ( x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) `  x
) )
278 fveq2 6191 . . . . . . . . 9  |-  ( y  =  x  ->  (
( x  e.  (
-u B (,) -u a
)  |->  ( F `  -u x ) ) `  y )  =  ( ( x  e.  (
-u B (,) -u a
)  |->  ( F `  -u x ) ) `  x ) )
279 fveq2 6191 . . . . . . . . 9  |-  ( y  =  x  ->  (
( x  e.  (
-u B (,) -u a
)  |->  ( G `  -u x ) ) `  y )  =  ( ( x  e.  (
-u B (,) -u a
)  |->  ( G `  -u x ) ) `  x ) )
280278, 279oveq12d 6668 . . . . . . . 8  |-  ( y  =  x  ->  (
( ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) `
 y )  / 
( ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) `
 y ) )  =  ( ( ( x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) ) `  x
)  /  ( ( x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) `  x
) ) )
281276, 277, 280cbvmpt 4749 . . . . . . 7  |-  ( y  e.  ( -u B (,) -u a )  |->  ( ( ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) `
 y )  / 
( ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) `
 y ) ) )  =  ( x  e.  ( -u B (,) -u a )  |->  ( ( ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) `
 x )  / 
( ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) `
 x ) ) )
282 fvex 6201 . . . . . . . . . 10  |-  ( F `
 -u x )  e. 
_V
28385fvmpt2 6291 . . . . . . . . . 10  |-  ( ( x  e.  ( -u B (,) -u a )  /\  ( F `  -u x
)  e.  _V )  ->  ( ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) `
 x )  =  ( F `  -u x
) )
28426, 282, 283sylancl 694 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) `
 x )  =  ( F `  -u x
) )
285 fvex 6201 . . . . . . . . . 10  |-  ( G `
 -u x )  e. 
_V
28687fvmpt2 6291 . . . . . . . . . 10  |-  ( ( x  e.  ( -u B (,) -u a )  /\  ( G `  -u x
)  e.  _V )  ->  ( ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) `
 x )  =  ( G `  -u x
) )
28726, 285, 286sylancl 694 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) `
 x )  =  ( G `  -u x
) )
288284, 287oveq12d 6668 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  x  e.  ( -u B (,) -u a ) )  -> 
( ( ( x  e.  ( -u B (,) -u a )  |->  ( F `  -u x
) ) `  x
)  /  ( ( x  e.  ( -u B (,) -u a )  |->  ( G `  -u x
) ) `  x
) )  =  ( ( F `  -u x
)  /  ( G `
 -u x ) ) )
289288mpteq2dva 4744 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( x  e.  ( -u B (,) -u a )  |->  ( ( ( x  e.  (
-u B (,) -u a
)  |->  ( F `  -u x ) ) `  x )  /  (
( x  e.  (
-u B (,) -u a
)  |->  ( G `  -u x ) ) `  x ) ) )  =  ( x  e.  ( -u B (,) -u a )  |->  ( ( F `  -u x
)  /  ( G `
 -u x ) ) ) )
290281, 289syl5eq 2668 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( y  e.  ( -u B (,) -u a )  |->  ( ( ( x  e.  (
-u B (,) -u a
)  |->  ( F `  -u x ) ) `  y )  /  (
( x  e.  (
-u B (,) -u a
)  |->  ( G `  -u x ) ) `  y ) ) )  =  ( x  e.  ( -u B (,) -u a )  |->  ( ( F `  -u x
)  /  ( G `
 -u x ) ) ) )
291290oveq1d 6665 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( y  e.  ( -u B (,) -u a )  |->  ( ( ( x  e.  ( -u B (,) -u a )  |->  ( F `
 -u x ) ) `
 y )  / 
( ( x  e.  ( -u B (,) -u a )  |->  ( G `
 -u x ) ) `
 y ) ) ) lim CC  -u B
)  =  ( ( x  e.  ( -u B (,) -u a )  |->  ( ( F `  -u x
)  /  ( G `
 -u x ) ) ) lim CC  -u B
) )
292273, 291eleqtrd 2703 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  C  e.  ( ( x  e.  (
-u B (,) -u a
)  |->  ( ( F `
 -u x )  / 
( G `  -u x
) ) ) lim CC  -u B ) )
293 negeq 10273 . . . . . 6  |-  ( x  =  -u z  ->  -u x  =  -u -u z )
294293fveq2d 6195 . . . . 5  |-  ( x  =  -u z  ->  ( F `  -u x )  =  ( F `  -u -u z ) )
295293fveq2d 6195 . . . . 5  |-  ( x  =  -u z  ->  ( G `  -u x )  =  ( G `  -u -u z ) )
296294, 295oveq12d 6668 . . . 4  |-  ( x  =  -u z  ->  (
( F `  -u x
)  /  ( G `
 -u x ) )  =  ( ( F `
 -u -u z )  / 
( G `  -u -u z
) ) )
29779adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  -u B  e.  RR )
298 eliooord 12233 . . . . . . . . . . 11  |-  ( z  e.  ( a (,) B )  ->  (
a  <  z  /\  z  <  B ) )
299298adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  (
a  <  z  /\  z  <  B ) )
300299simprd 479 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  z  <  B )
30115, 13ltnegd 10605 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  (
z  <  B  <->  -u B  <  -u z ) )
302300, 301mpbid 222 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  -u B  <  -u z )
303297, 302gtned 10172 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  -u z  =/=  -u B )
304303neneqd 2799 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  -.  -u z  =  -u B
)
305304pm2.21d 118 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  ( -u z  =  -u B  ->  ( ( F `  -u -u z )  /  ( G `  -u -u z
) )  =  C ) )
306305impr 649 . . . 4  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  ( z  e.  ( a (,) B )  /\  -u z  =  -u B ) )  ->  ( ( F `
 -u -u z )  / 
( G `  -u -u z
) )  =  C )
30719, 65, 78, 292, 296, 306limcco 23657 . . 3  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  C  e.  ( ( z  e.  ( a (,) B ) 
|->  ( ( F `  -u -u z )  /  ( G `  -u -u z
) ) ) lim CC  B ) )
30815recnd 10068 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  z  e.  CC )
309308negnegd 10383 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  -u -u z  =  z )
310309fveq2d 6195 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  ( F `  -u -u z
)  =  ( F `
 z ) )
311309fveq2d 6195 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  ( G `  -u -u z
)  =  ( G `
 z ) )
312310, 311oveq12d 6668 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( a (,) B
) )  ->  (
( F `  -u -u z
)  /  ( G `
 -u -u z ) )  =  ( ( F `
 z )  / 
( G `  z
) ) )
313312mpteq2dva 4744 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( z  e.  ( a (,) B
)  |->  ( ( F `
 -u -u z )  / 
( G `  -u -u z
) ) )  =  ( z  e.  ( a (,) B ) 
|->  ( ( F `  z )  /  ( G `  z )
) ) )
314313oveq1d 6665 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( z  e.  ( a (,) B )  |->  ( ( F `  -u -u z
)  /  ( G `
 -u -u z ) ) ) lim CC  B )  =  ( ( z  e.  ( a (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) ) lim
CC  B ) )
31541resmptd 5452 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) )  |`  ( a (,) B
) )  =  ( z  e.  ( a (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) )
316315oveq1d 6665 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) )  |`  ( a (,) B ) ) lim CC  B )  =  ( ( z  e.  ( a (,) B ) 
|->  ( ( F `  z )  /  ( G `  z )
) ) lim CC  B
) )
317 fss 6056 . . . . . . . . 9  |-  ( ( F : ( A (,) B ) --> RR 
/\  RR  C_  CC )  ->  F : ( A (,) B ) --> CC )
31893, 53, 317sylancl 694 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  F : ( A (,) B ) --> CC )
319318ffvelrnda 6359 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  ( F `  z )  e.  CC )
32055ffvelrnda 6359 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  ( G `  z )  e.  CC )
32150ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  -.  0  e.  ran  G )
32255, 57syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  G  Fn  ( A (,) B ) )
323 fnfvelrn 6356 . . . . . . . . . . 11  |-  ( ( G  Fn  ( A (,) B )  /\  z  e.  ( A (,) B ) )  -> 
( G `  z
)  e.  ran  G
)
324322, 323sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  ( G `  z )  e.  ran  G )
325 eleq1 2689 . . . . . . . . . 10  |-  ( ( G `  z )  =  0  ->  (
( G `  z
)  e.  ran  G  <->  0  e.  ran  G ) )
326324, 325syl5ibcom 235 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  (
( G `  z
)  =  0  -> 
0  e.  ran  G
) )
327326necon3bd 2808 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  ( -.  0  e.  ran  G  ->  ( G `  z )  =/=  0
) )
328321, 327mpd 15 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  ( G `  z )  =/=  0 )
329319, 320, 328divcld 10801 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  /\  z  e.  ( A (,) B
) )  ->  (
( F `  z
)  /  ( G `
 z ) )  e.  CC )
330 eqid 2622 . . . . . 6  |-  ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) )  =  ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) )
331329, 330fmptd 6385 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( z  e.  ( A (,) B
)  |->  ( ( F `
 z )  / 
( G `  z
) ) ) : ( A (,) B
) --> CC )
332 ioossre 12235 . . . . . . 7  |-  ( A (,) B )  C_  RR
333332, 53sstri 3612 . . . . . 6  |-  ( A (,) B )  C_  CC
334333a1i 11 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( A (,) B )  C_  CC )
335 eqid 2622 . . . . 5  |-  ( (
TopOpen ` fld )t  ( ( A (,) B )  u.  { B } ) )  =  ( ( TopOpen ` fld )t  ( ( A (,) B )  u. 
{ B } ) )
336 ssun2 3777 . . . . . . 7  |-  { B }  C_  ( ( a (,) B )  u. 
{ B } )
337 snssg 4327 . . . . . . . 8  |-  ( B  e.  RR  ->  ( B  e.  ( (
a (,) B )  u.  { B }
)  <->  { B }  C_  ( ( a (,) B )  u.  { B } ) ) )
33875, 337syl 17 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( B  e.  ( ( a (,) B )  u.  { B } )  <->  { B }  C_  ( ( a (,) B )  u. 
{ B } ) ) )
339336, 338mpbiri 248 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  B  e.  ( ( a (,) B
)  u.  { B } ) )
340104cnfldtopon 22586 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
341332a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( A (,) B )  C_  RR )
34275snssd 4340 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  { B }  C_  RR )
343341, 342unssd 3789 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( A (,) B )  u. 
{ B } ) 
C_  RR )
344343, 53syl6ss 3615 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( A (,) B )  u. 
{ B } ) 
C_  CC )
345 resttopon 20965 . . . . . . . . 9  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  (
( A (,) B
)  u.  { B } )  C_  CC )  ->  ( ( TopOpen ` fld )t  (
( A (,) B
)  u.  { B } ) )  e.  (TopOn `  ( ( A (,) B )  u. 
{ B } ) ) )
346340, 344, 345sylancr 695 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( TopOpen ` fld )t  (
( A (,) B
)  u.  { B } ) )  e.  (TopOn `  ( ( A (,) B )  u. 
{ B } ) ) )
347 topontop 20718 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )t  ( ( A (,) B )  u. 
{ B } ) )  e.  (TopOn `  ( ( A (,) B )  u.  { B } ) )  -> 
( ( TopOpen ` fld )t  ( ( A (,) B )  u. 
{ B } ) )  e.  Top )
348346, 347syl 17 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( TopOpen ` fld )t  (
( A (,) B
)  u.  { B } ) )  e. 
Top )
349 indi 3873 . . . . . . . . . 10  |-  ( ( a (,) +oo )  i^i  ( ( A (,) B )  u.  { B } ) )  =  ( ( ( a (,) +oo )  i^i  ( A (,) B
) )  u.  (
( a (,) +oo )  i^i  { B }
) )
350 pnfxr 10092 . . . . . . . . . . . . . 14  |- +oo  e.  RR*
351350a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  -> +oo  e.  RR* )
3524adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  B  e.  RR* )
353 iooin 12209 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  RR*  /\ +oo  e.  RR* )  /\  ( A  e.  RR*  /\  B  e.  RR* ) )  -> 
( ( a (,) +oo )  i^i  ( A (,) B ) )  =  ( if ( a  <_  A ,  A ,  a ) (,) if ( +oo  <_  B , +oo ,  B
) ) )
35436, 351, 34, 352, 353syl22anc 1327 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( a (,) +oo )  i^i  ( A (,) B
) )  =  ( if ( a  <_  A ,  A , 
a ) (,) if ( +oo  <_  B , +oo ,  B ) ) )
355 xrltnle 10105 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  a  e.  RR* )  ->  ( A  <  a  <->  -.  a  <_  A ) )
35634, 36, 355syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( A  < 
a  <->  -.  a  <_  A ) )
35735, 356mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -.  a  <_  A )
358357iffalsed 4097 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  if ( a  <_  A ,  A ,  a )  =  a )
359 ltpnf 11954 . . . . . . . . . . . . . . . 16  |-  ( B  e.  RR  ->  B  < +oo )
36075, 359syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  B  < +oo )
361 xrltnle 10105 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  RR*  /\ +oo  e.  RR* )  ->  ( B  < +oo  <->  -. +oo  <_  B
) )
362352, 350, 361sylancl 694 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( B  < +oo 
<->  -. +oo  <_  B
) )
363360, 362mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  -. +oo  <_  B
)
364363iffalsed 4097 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  if ( +oo  <_  B , +oo ,  B )  =  B )
365358, 364oveq12d 6668 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( if ( a  <_  A ,  A ,  a ) (,) if ( +oo  <_  B , +oo ,  B
) )  =  ( a (,) B ) )
366354, 365eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( a (,) +oo )  i^i  ( A (,) B
) )  =  ( a (,) B ) )
367 elioopnf 12267 . . . . . . . . . . . . . . 15  |-  ( a  e.  RR*  ->  ( B  e.  ( a (,) +oo )  <->  ( B  e.  RR  /\  a  < 
B ) ) )
36836, 367syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( B  e.  ( a (,) +oo ) 
<->  ( B  e.  RR  /\  a  <  B ) ) )
36975, 82, 368mpbir2and 957 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  B  e.  ( a (,) +oo )
)
370369snssd 4340 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  { B }  C_  ( a (,) +oo ) )
371 sseqin2 3817 . . . . . . . . . . . 12  |-  ( { B }  C_  (
a (,) +oo )  <->  ( ( a (,) +oo )  i^i  { B }
)  =  { B } )
372370, 371sylib 208 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( a (,) +oo )  i^i 
{ B } )  =  { B }
)
373366, 372uneq12d 3768 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( ( a (,) +oo )  i^i  ( A (,) B
) )  u.  (
( a (,) +oo )  i^i  { B }
) )  =  ( ( a (,) B
)  u.  { B } ) )
374349, 373syl5eq 2668 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( a (,) +oo )  i^i  ( ( A (,) B )  u.  { B } ) )  =  ( ( a (,) B )  u.  { B } ) )
375 retop 22565 . . . . . . . . . . 11  |-  ( topGen ` 
ran  (,) )  e.  Top
376375a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( topGen `  ran  (,) )  e.  Top )
377 reex 10027 . . . . . . . . . . . 12  |-  RR  e.  _V
378377ssex 4802 . . . . . . . . . . 11  |-  ( ( ( A (,) B
)  u.  { B } )  C_  RR  ->  ( ( A (,) B )  u.  { B } )  e.  _V )
379343, 378syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( A (,) B )  u. 
{ B } )  e.  _V )
380 iooretop 22569 . . . . . . . . . . 11  |-  ( a (,) +oo )  e.  ( topGen `  ran  (,) )
381380a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( a (,) +oo )  e.  ( topGen `
 ran  (,) )
)
382 elrestr 16089 . . . . . . . . . 10  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( ( A (,) B )  u.  { B }
)  e.  _V  /\  ( a (,) +oo )  e.  ( topGen ` 
ran  (,) ) )  -> 
( ( a (,) +oo )  i^i  (
( A (,) B
)  u.  { B } ) )  e.  ( ( topGen `  ran  (,) )t  ( ( A (,) B )  u.  { B } ) ) )
383376, 379, 381, 382syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( a (,) +oo )  i^i  ( ( A (,) B )  u.  { B } ) )  e.  ( ( topGen `  ran  (,) )t  ( ( A (,) B )  u.  { B } ) ) )
384374, 383eqeltrrd 2702 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( a (,) B )  u. 
{ B } )  e.  ( ( topGen ` 
ran  (,) )t  ( ( A (,) B )  u. 
{ B } ) ) )
385 eqid 2622 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
386104, 385rerest 22607 . . . . . . . . 9  |-  ( ( ( A (,) B
)  u.  { B } )  C_  RR  ->  ( ( TopOpen ` fld )t  ( ( A (,) B )  u. 
{ B } ) )  =  ( (
topGen `  ran  (,) )t  (
( A (,) B
)  u.  { B } ) ) )
387343, 386syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( TopOpen ` fld )t  (
( A (,) B
)  u.  { B } ) )  =  ( ( topGen `  ran  (,) )t  ( ( A (,) B )  u.  { B } ) ) )
388384, 387eleqtrrd 2704 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( a (,) B )  u. 
{ B } )  e.  ( ( TopOpen ` fld )t  (
( A (,) B
)  u.  { B } ) ) )
389 isopn3i 20886 . . . . . . 7  |-  ( ( ( ( TopOpen ` fld )t  ( ( A (,) B )  u. 
{ B } ) )  e.  Top  /\  ( ( a (,) B )  u.  { B } )  e.  ( ( TopOpen ` fld )t  ( ( A (,) B )  u. 
{ B } ) ) )  ->  (
( int `  (
( TopOpen ` fld )t  ( ( A (,) B )  u. 
{ B } ) ) ) `  (
( a (,) B
)  u.  { B } ) )  =  ( ( a (,) B )  u.  { B } ) )
390348, 388, 389syl2anc 693 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( int `  ( ( TopOpen ` fld )t  ( ( A (,) B )  u. 
{ B } ) ) ) `  (
( a (,) B
)  u.  { B } ) )  =  ( ( a (,) B )  u.  { B } ) )
391339, 390eleqtrrd 2704 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  B  e.  ( ( int `  (
( TopOpen ` fld )t  ( ( A (,) B )  u. 
{ B } ) ) ) `  (
( a (,) B
)  u.  { B } ) ) )
392331, 41, 334, 104, 335, 391limcres 23650 . . . 4  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) )  |`  ( a (,) B ) ) lim CC  B )  =  ( ( z  e.  ( A (,) B ) 
|->  ( ( F `  z )  /  ( G `  z )
) ) lim CC  B
) )
393314, 316, 3923eqtr2d 2662 . . 3  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  ( ( z  e.  ( a (,) B )  |->  ( ( F `  -u -u z
)  /  ( G `
 -u -u z ) ) ) lim CC  B )  =  ( ( z  e.  ( A (,) B )  |->  ( ( F `  z )  /  ( G `  z ) ) ) lim
CC  B ) )
394307, 393eleqtrd 2703 . 2  |-  ( (
ph  /\  ( a  e.  RR  /\  ( A  <  a  /\  a  <  B ) ) )  ->  C  e.  ( ( z  e.  ( A (,) B ) 
|->  ( ( F `  z )  /  ( G `  z )
) ) lim CC  B
) )
3959, 394rexlimddv 3035 1  |-  ( ph  ->  C  e.  ( ( z  e.  ( A (,) B )  |->  ( ( F `  z
)  /  ( G `
 z ) ) ) lim CC  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   ifcif 4086   {csn 4177   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   -ucneg 10267    / cdiv 10684   QQcq 11788   (,)cioo 12175   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715   intcnt 20821   -cn->ccncf 22679   lim CC climc 23626    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  lhop  23779  fourierdlem60  40383
  Copyright terms: Public domain W3C validator