MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnvrelem1 Structured version   Visualization version   Unicode version

Theorem dvcnvrelem1 23780
Description: Lemma for dvcnvre 23782. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvcnvre.f  |-  ( ph  ->  F  e.  ( X
-cn-> RR ) )
dvcnvre.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  X )
dvcnvre.z  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  F
) )
dvcnvre.1  |-  ( ph  ->  F : X -1-1-onto-> Y )
dvcnvre.c  |-  ( ph  ->  C  e.  X )
dvcnvre.r  |-  ( ph  ->  R  e.  RR+ )
dvcnvre.s  |-  ( ph  ->  ( ( C  -  R ) [,] ( C  +  R )
)  C_  X )
Assertion
Ref Expression
dvcnvrelem1  |-  ( ph  ->  ( F `  C
)  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )

Proof of Theorem dvcnvrelem1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcnvre.d . . . . . 6  |-  ( ph  ->  dom  ( RR  _D  F )  =  X )
2 dvbsss 23666 . . . . . 6  |-  dom  ( RR  _D  F )  C_  RR
31, 2syl6eqssr 3656 . . . . 5  |-  ( ph  ->  X  C_  RR )
4 dvcnvre.c . . . . 5  |-  ( ph  ->  C  e.  X )
53, 4sseldd 3604 . . . 4  |-  ( ph  ->  C  e.  RR )
6 dvcnvre.r . . . . 5  |-  ( ph  ->  R  e.  RR+ )
76rpred 11872 . . . 4  |-  ( ph  ->  R  e.  RR )
85, 7resubcld 10458 . . 3  |-  ( ph  ->  ( C  -  R
)  e.  RR )
95, 7readdcld 10069 . . 3  |-  ( ph  ->  ( C  +  R
)  e.  RR )
105, 6ltsubrpd 11904 . . . . 5  |-  ( ph  ->  ( C  -  R
)  <  C )
115, 6ltaddrpd 11905 . . . . 5  |-  ( ph  ->  C  <  ( C  +  R ) )
128, 5, 9, 10, 11lttrd 10198 . . . 4  |-  ( ph  ->  ( C  -  R
)  <  ( C  +  R ) )
138, 9, 12ltled 10185 . . 3  |-  ( ph  ->  ( C  -  R
)  <_  ( C  +  R ) )
14 dvcnvre.s . . . 4  |-  ( ph  ->  ( ( C  -  R ) [,] ( C  +  R )
)  C_  X )
15 dvcnvre.f . . . 4  |-  ( ph  ->  F  e.  ( X
-cn-> RR ) )
16 rescncf 22700 . . . 4  |-  ( ( ( C  -  R
) [,] ( C  +  R ) ) 
C_  X  ->  ( F  e.  ( X -cn->
RR )  ->  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) )  e.  ( ( ( C  -  R ) [,] ( C  +  R
) ) -cn-> RR ) ) )
1714, 15, 16sylc 65 . . 3  |-  ( ph  ->  ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  e.  ( ( ( C  -  R
) [,] ( C  +  R ) )
-cn-> RR ) )
188, 9, 13, 17evthicc2 23229 . 2  |-  ( ph  ->  E. x  e.  RR  E. y  e.  RR  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) )  =  ( x [,] y ) )
19 cncff 22696 . . . . . . . . 9  |-  ( F  e.  ( X -cn-> RR )  ->  F : X
--> RR )
2015, 19syl 17 . . . . . . . 8  |-  ( ph  ->  F : X --> RR )
2120, 4ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( F `  C
)  e.  RR )
2221adantr 481 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F `  C )  e.  RR )
238rexrd 10089 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  -  R
)  e.  RR* )
249rexrd 10089 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  +  R
)  e.  RR* )
25 lbicc2 12288 . . . . . . . . . . . 12  |-  ( ( ( C  -  R
)  e.  RR*  /\  ( C  +  R )  e.  RR*  /\  ( C  -  R )  <_ 
( C  +  R
) )  ->  ( C  -  R )  e.  ( ( C  -  R ) [,] ( C  +  R )
) )
2623, 24, 13, 25syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  ( C  -  R
)  e.  ( ( C  -  R ) [,] ( C  +  R ) ) )
2726adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( C  -  R )  e.  ( ( C  -  R ) [,] ( C  +  R )
) )
288, 5, 10ltled 10185 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  -  R
)  <_  C )
295, 9, 11ltled 10185 . . . . . . . . . . . 12  |-  ( ph  ->  C  <_  ( C  +  R ) )
30 elicc2 12238 . . . . . . . . . . . . 13  |-  ( ( ( C  -  R
)  e.  RR  /\  ( C  +  R
)  e.  RR )  ->  ( C  e.  ( ( C  -  R ) [,] ( C  +  R )
)  <->  ( C  e.  RR  /\  ( C  -  R )  <_  C  /\  C  <_  ( C  +  R )
) ) )
318, 9, 30syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  e.  ( ( C  -  R
) [,] ( C  +  R ) )  <-> 
( C  e.  RR  /\  ( C  -  R
)  <_  C  /\  C  <_  ( C  +  R ) ) ) )
325, 28, 29, 31mpbir3and 1245 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ( ( C  -  R ) [,] ( C  +  R ) ) )
3332adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  C  e.  ( ( C  -  R ) [,] ( C  +  R )
) )
3410adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( C  -  R )  <  C )
35 isorel 6576 . . . . . . . . . . . . 13  |-  ( ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R )
) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  /\  ( ( C  -  R )  e.  ( ( C  -  R ) [,] ( C  +  R )
)  /\  C  e.  ( ( C  -  R ) [,] ( C  +  R )
) ) )  -> 
( ( C  -  R )  <  C  <->  ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  -  R ) )  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  C
) ) )
3635biimpd 219 . . . . . . . . . . . 12  |-  ( ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R )
) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  /\  ( ( C  -  R )  e.  ( ( C  -  R ) [,] ( C  +  R )
)  /\  C  e.  ( ( C  -  R ) [,] ( C  +  R )
) ) )  -> 
( ( C  -  R )  <  C  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  ( C  -  R )
)  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  C ) ) )
3736exp32 631 . . . . . . . . . . 11  |-  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R ) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) )  -> 
( ( C  -  R )  e.  ( ( C  -  R
) [,] ( C  +  R ) )  ->  ( C  e.  ( ( C  -  R ) [,] ( C  +  R )
)  ->  ( ( C  -  R )  <  C  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  ( C  -  R
) )  <  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  C ) ) ) ) )
3837com4l 92 . . . . . . . . . 10  |-  ( ( C  -  R )  e.  ( ( C  -  R ) [,] ( C  +  R
) )  ->  ( C  e.  ( ( C  -  R ) [,] ( C  +  R
) )  ->  (
( C  -  R
)  <  C  ->  ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R )
) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  ( C  -  R )
)  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  C ) ) ) ) )
3927, 33, 34, 38syl3c 66 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R )
) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  ( C  -  R )
)  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  C ) ) )
40 fvres 6207 . . . . . . . . . . 11  |-  ( ( C  -  R )  e.  ( ( C  -  R ) [,] ( C  +  R
) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  -  R ) )  =  ( F `  ( C  -  R
) ) )
4127, 40syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  -  R ) )  =  ( F `  ( C  -  R
) ) )
42 fvres 6207 . . . . . . . . . . 11  |-  ( C  e.  ( ( C  -  R ) [,] ( C  +  R
) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  C )  =  ( F `  C ) )
4333, 42syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  C )  =  ( F `  C ) )
4441, 43breq12d 4666 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  ( C  -  R )
)  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  C )  <->  ( F `  ( C  -  R
) )  <  ( F `  C )
) )
4539, 44sylibd 229 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R )
) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  ->  ( F `  ( C  -  R
) )  <  ( F `  C )
) )
4620adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  F : X --> RR )
47 ffun 6048 . . . . . . . . . . . . . . 15  |-  ( F : X --> RR  ->  Fun 
F )
4846, 47syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  Fun  F )
4914adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( C  -  R
) [,] ( C  +  R ) ) 
C_  X )
50 fdm 6051 . . . . . . . . . . . . . . . 16  |-  ( F : X --> RR  ->  dom 
F  =  X )
5146, 50syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  dom  F  =  X )
5249, 51sseqtr4d 3642 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( C  -  R
) [,] ( C  +  R ) ) 
C_  dom  F )
53 funfvima2 6493 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  (
( C  -  R
) [,] ( C  +  R ) ) 
C_  dom  F )  ->  ( ( C  -  R )  e.  ( ( C  -  R
) [,] ( C  +  R ) )  ->  ( F `  ( C  -  R
) )  e.  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )
5448, 52, 53syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( C  -  R
)  e.  ( ( C  -  R ) [,] ( C  +  R ) )  -> 
( F `  ( C  -  R )
)  e.  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) ) )
5527, 54mpd 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F `  ( C  -  R ) )  e.  ( F " (
( C  -  R
) [,] ( C  +  R ) ) ) )
56 df-ima 5127 . . . . . . . . . . . . 13  |-  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) )  =  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )
57 simprr 796 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) )  =  ( x [,] y ) )
5856, 57syl5eq 2668 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F " ( ( C  -  R ) [,] ( C  +  R
) ) )  =  ( x [,] y
) )
5955, 58eleqtrd 2703 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F `  ( C  -  R ) )  e.  ( x [,] y
) )
60 elicc2 12238 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( F `  ( C  -  R
) )  e.  ( x [,] y )  <-> 
( ( F `  ( C  -  R
) )  e.  RR  /\  x  <_  ( F `  ( C  -  R
) )  /\  ( F `  ( C  -  R ) )  <_ 
y ) ) )
6160ad2antrl 764 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F `  ( C  -  R )
)  e.  ( x [,] y )  <->  ( ( F `  ( C  -  R ) )  e.  RR  /\  x  <_ 
( F `  ( C  -  R )
)  /\  ( F `  ( C  -  R
) )  <_  y
) ) )
6259, 61mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F `  ( C  -  R )
)  e.  RR  /\  x  <_  ( F `  ( C  -  R
) )  /\  ( F `  ( C  -  R ) )  <_ 
y ) )
6362simp2d 1074 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  x  <_  ( F `  ( C  -  R )
) )
64 simprll 802 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  x  e.  RR )
6514, 26sseldd 3604 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  -  R
)  e.  X )
6620, 65ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  ( C  -  R )
)  e.  RR )
6766adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F `  ( C  -  R ) )  e.  RR )
68 lelttr 10128 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  ( F `  ( C  -  R ) )  e.  RR  /\  ( F `  C )  e.  RR )  ->  (
( x  <_  ( F `  ( C  -  R ) )  /\  ( F `  ( C  -  R ) )  <  ( F `  C ) )  ->  x  <  ( F `  C ) ) )
6964, 67, 22, 68syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( x  <_  ( F `  ( C  -  R ) )  /\  ( F `  ( C  -  R ) )  <  ( F `  C ) )  ->  x  <  ( F `  C ) ) )
7063, 69mpand 711 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F `  ( C  -  R )
)  <  ( F `  C )  ->  x  <  ( F `  C
) ) )
7145, 70syld 47 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R )
) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  ->  x  <  ( F `  C )
) )
72 ubicc2 12289 . . . . . . . . . . . 12  |-  ( ( ( C  -  R
)  e.  RR*  /\  ( C  +  R )  e.  RR*  /\  ( C  -  R )  <_ 
( C  +  R
) )  ->  ( C  +  R )  e.  ( ( C  -  R ) [,] ( C  +  R )
) )
7323, 24, 13, 72syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  ( C  +  R
)  e.  ( ( C  -  R ) [,] ( C  +  R ) ) )
7473adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( C  +  R )  e.  ( ( C  -  R ) [,] ( C  +  R )
) )
7511adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  C  <  ( C  +  R
) )
76 isorel 6576 . . . . . . . . . . . . 13  |-  ( ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R
) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  /\  ( C  e.  ( ( C  -  R ) [,] ( C  +  R
) )  /\  ( C  +  R )  e.  ( ( C  -  R ) [,] ( C  +  R )
) ) )  -> 
( C  <  ( C  +  R )  <->  ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  C ) `'  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  ( C  +  R )
) ) )
7776biimpd 219 . . . . . . . . . . . 12  |-  ( ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R
) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  /\  ( C  e.  ( ( C  -  R ) [,] ( C  +  R
) )  /\  ( C  +  R )  e.  ( ( C  -  R ) [,] ( C  +  R )
) ) )  -> 
( C  <  ( C  +  R )  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  C
) `'  <  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  +  R ) ) ) )
7877exp32 631 . . . . . . . . . . 11  |-  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R
) [,] ( C  +  R ) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) )  -> 
( C  e.  ( ( C  -  R
) [,] ( C  +  R ) )  ->  ( ( C  +  R )  e.  ( ( C  -  R ) [,] ( C  +  R )
)  ->  ( C  <  ( C  +  R
)  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  C ) `'  <  ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  +  R ) ) ) ) ) )
7978com4l 92 . . . . . . . . . 10  |-  ( C  e.  ( ( C  -  R ) [,] ( C  +  R
) )  ->  (
( C  +  R
)  e.  ( ( C  -  R ) [,] ( C  +  R ) )  -> 
( C  <  ( C  +  R )  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R ) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) )  -> 
( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  C
) `'  <  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  +  R ) ) ) ) ) )
8033, 74, 75, 79syl3c 66 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R
) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  C ) `'  <  ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  +  R ) ) ) )
81 fvex 6201 . . . . . . . . . . 11  |-  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  C )  e.  _V
82 fvex 6201 . . . . . . . . . . 11  |-  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  ( C  +  R
) )  e.  _V
8381, 82brcnv 5305 . . . . . . . . . 10  |-  ( ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  C ) `'  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  ( C  +  R )
)  <->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  ( C  +  R )
)  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  C ) )
84 fvres 6207 . . . . . . . . . . . 12  |-  ( ( C  +  R )  e.  ( ( C  -  R ) [,] ( C  +  R
) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  +  R ) )  =  ( F `  ( C  +  R
) ) )
8574, 84syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  +  R ) )  =  ( F `  ( C  +  R
) ) )
8685, 43breq12d 4666 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  ( C  +  R )
)  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  C )  <->  ( F `  ( C  +  R
) )  <  ( F `  C )
) )
8783, 86syl5bb 272 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  C
) `'  <  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  +  R ) )  <-> 
( F `  ( C  +  R )
)  <  ( F `  C ) ) )
8880, 87sylibd 229 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R
) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  ->  ( F `  ( C  +  R
) )  <  ( F `  C )
) )
89 funfvima2 6493 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  (
( C  -  R
) [,] ( C  +  R ) ) 
C_  dom  F )  ->  ( ( C  +  R )  e.  ( ( C  -  R
) [,] ( C  +  R ) )  ->  ( F `  ( C  +  R
) )  e.  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )
9048, 52, 89syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( C  +  R
)  e.  ( ( C  -  R ) [,] ( C  +  R ) )  -> 
( F `  ( C  +  R )
)  e.  ( F
" ( ( C  -  R ) [,] ( C  +  R
) ) ) ) )
9174, 90mpd 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F `  ( C  +  R ) )  e.  ( F " (
( C  -  R
) [,] ( C  +  R ) ) ) )
9291, 58eleqtrd 2703 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F `  ( C  +  R ) )  e.  ( x [,] y
) )
93 elicc2 12238 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( F `  ( C  +  R
) )  e.  ( x [,] y )  <-> 
( ( F `  ( C  +  R
) )  e.  RR  /\  x  <_  ( F `  ( C  +  R
) )  /\  ( F `  ( C  +  R ) )  <_ 
y ) ) )
9493ad2antrl 764 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F `  ( C  +  R )
)  e.  ( x [,] y )  <->  ( ( F `  ( C  +  R ) )  e.  RR  /\  x  <_ 
( F `  ( C  +  R )
)  /\  ( F `  ( C  +  R
) )  <_  y
) ) )
9592, 94mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F `  ( C  +  R )
)  e.  RR  /\  x  <_  ( F `  ( C  +  R
) )  /\  ( F `  ( C  +  R ) )  <_ 
y ) )
9695simp2d 1074 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  x  <_  ( F `  ( C  +  R )
) )
9714, 73sseldd 3604 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  +  R
)  e.  X )
9820, 97ffvelrnd 6360 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  ( C  +  R )
)  e.  RR )
9998adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F `  ( C  +  R ) )  e.  RR )
100 lelttr 10128 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  ( F `  ( C  +  R ) )  e.  RR  /\  ( F `  C )  e.  RR )  ->  (
( x  <_  ( F `  ( C  +  R ) )  /\  ( F `  ( C  +  R ) )  <  ( F `  C ) )  ->  x  <  ( F `  C ) ) )
10164, 99, 22, 100syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( x  <_  ( F `  ( C  +  R ) )  /\  ( F `  ( C  +  R ) )  <  ( F `  C ) )  ->  x  <  ( F `  C ) ) )
10296, 101mpand 711 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F `  ( C  +  R )
)  <  ( F `  C )  ->  x  <  ( F `  C
) ) )
10388, 102syld 47 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R
) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  ->  x  <  ( F `  C ) ) )
104 ax-resscn 9993 . . . . . . . . . . . . . 14  |-  RR  C_  CC
105104a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  RR  C_  CC )
106 fss 6056 . . . . . . . . . . . . . 14  |-  ( ( F : X --> RR  /\  RR  C_  CC )  ->  F : X --> CC )
10720, 104, 106sylancl 694 . . . . . . . . . . . . 13  |-  ( ph  ->  F : X --> CC )
10814, 3sstrd 3613 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  -  R ) [,] ( C  +  R )
)  C_  RR )
109 eqid 2622 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
110109tgioo2 22606 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
111109, 110dvres 23675 . . . . . . . . . . . . 13  |-  ( ( ( RR  C_  CC  /\  F : X --> CC )  /\  ( X  C_  RR  /\  ( ( C  -  R ) [,] ( C  +  R
) )  C_  RR ) )  ->  ( RR  _D  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) )  =  ( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( ( C  -  R ) [,] ( C  +  R
) ) ) ) )
112105, 107, 3, 108, 111syl22anc 1327 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  =  ( ( RR 
_D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( ( C  -  R ) [,] ( C  +  R
) ) ) ) )
113 iccntr 22624 . . . . . . . . . . . . . 14  |-  ( ( ( C  -  R
)  e.  RR  /\  ( C  +  R
)  e.  RR )  ->  ( ( int `  ( topGen `  ran  (,) )
) `  ( ( C  -  R ) [,] ( C  +  R
) ) )  =  ( ( C  -  R ) (,) ( C  +  R )
) )
1148, 9, 113syl2anc 693 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( ( C  -  R ) [,] ( C  +  R
) ) )  =  ( ( C  -  R ) (,) ( C  +  R )
) )
115114reseq2d 5396 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  =  ( ( RR 
_D  F )  |`  ( ( C  -  R ) (,) ( C  +  R )
) ) )
116112, 115eqtrd 2656 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  =  ( ( RR 
_D  F )  |`  ( ( C  -  R ) (,) ( C  +  R )
) ) )
117116dmeqd 5326 . . . . . . . . . 10  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  =  dom  (
( RR  _D  F
)  |`  ( ( C  -  R ) (,) ( C  +  R
) ) ) )
118 dmres 5419 . . . . . . . . . . 11  |-  dom  (
( RR  _D  F
)  |`  ( ( C  -  R ) (,) ( C  +  R
) ) )  =  ( ( ( C  -  R ) (,) ( C  +  R
) )  i^i  dom  ( RR  _D  F
) )
119 ioossicc 12259 . . . . . . . . . . . . . 14  |-  ( ( C  -  R ) (,) ( C  +  R ) )  C_  ( ( C  -  R ) [,] ( C  +  R )
)
120119, 14syl5ss 3614 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  -  R ) (,) ( C  +  R )
)  C_  X )
121120, 1sseqtr4d 3642 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( C  -  R ) (,) ( C  +  R )
)  C_  dom  ( RR 
_D  F ) )
122 df-ss 3588 . . . . . . . . . . . 12  |-  ( ( ( C  -  R
) (,) ( C  +  R ) ) 
C_  dom  ( RR  _D  F )  <->  ( (
( C  -  R
) (,) ( C  +  R ) )  i^i  dom  ( RR  _D  F ) )  =  ( ( C  -  R ) (,) ( C  +  R )
) )
123121, 122sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  -  R ) (,) ( C  +  R
) )  i^i  dom  ( RR  _D  F
) )  =  ( ( C  -  R
) (,) ( C  +  R ) ) )
124118, 123syl5eq 2668 . . . . . . . . . 10  |-  ( ph  ->  dom  ( ( RR 
_D  F )  |`  ( ( C  -  R ) (,) ( C  +  R )
) )  =  ( ( C  -  R
) (,) ( C  +  R ) ) )
125117, 124eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  dom  ( RR  _D  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  =  ( ( C  -  R ) (,) ( C  +  R ) ) )
126 resss 5422 . . . . . . . . . . . 12  |-  ( ( RR  _D  F )  |`  ( ( C  -  R ) (,) ( C  +  R )
) )  C_  ( RR  _D  F )
127116, 126syl6eqss 3655 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) ) 
C_  ( RR  _D  F ) )
128 rnss 5354 . . . . . . . . . . 11  |-  ( ( RR  _D  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) )  C_  ( RR  _D  F
)  ->  ran  ( RR 
_D  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) )  C_  ran  ( RR  _D  F
) )
129127, 128syl 17 . . . . . . . . . 10  |-  ( ph  ->  ran  ( RR  _D  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  C_  ran  ( RR 
_D  F ) )
130 dvcnvre.z . . . . . . . . . 10  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  F
) )
131129, 130ssneldd 3606 . . . . . . . . 9  |-  ( ph  ->  -.  0  e.  ran  ( RR  _D  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) ) )
1328, 9, 17, 125, 131dvne0 23774 . . . . . . . 8  |-  ( ph  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R ) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) )  \/  ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R
) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) ) ) )
133132adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R )
) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  \/  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R ) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) ) ) )
13471, 103, 133mpjaod 396 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  x  <  ( F `  C
) )
135 isorel 6576 . . . . . . . . . . . . 13  |-  ( ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R )
) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  /\  ( C  e.  ( ( C  -  R ) [,] ( C  +  R )
)  /\  ( C  +  R )  e.  ( ( C  -  R
) [,] ( C  +  R ) ) ) )  ->  ( C  <  ( C  +  R )  <->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  C )  <  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  +  R ) ) ) )
136135biimpd 219 . . . . . . . . . . . 12  |-  ( ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R )
) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  /\  ( C  e.  ( ( C  -  R ) [,] ( C  +  R )
)  /\  ( C  +  R )  e.  ( ( C  -  R
) [,] ( C  +  R ) ) ) )  ->  ( C  <  ( C  +  R )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  C )  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  ( C  +  R )
) ) )
137136exp32 631 . . . . . . . . . . 11  |-  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R ) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) )  -> 
( C  e.  ( ( C  -  R
) [,] ( C  +  R ) )  ->  ( ( C  +  R )  e.  ( ( C  -  R ) [,] ( C  +  R )
)  ->  ( C  <  ( C  +  R
)  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  C )  <  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  +  R ) ) ) ) ) )
138137com4l 92 . . . . . . . . . 10  |-  ( C  e.  ( ( C  -  R ) [,] ( C  +  R
) )  ->  (
( C  +  R
)  e.  ( ( C  -  R ) [,] ( C  +  R ) )  -> 
( C  <  ( C  +  R )  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R ) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) )  -> 
( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  C
)  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  ( C  +  R
) ) ) ) ) )
13933, 74, 75, 138syl3c 66 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R )
) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  C
)  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  ( C  +  R
) ) ) )
14043, 85breq12d 4666 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  C
)  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  ( C  +  R
) )  <->  ( F `  C )  <  ( F `  ( C  +  R ) ) ) )
141139, 140sylibd 229 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R )
) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  ->  ( F `  C )  <  ( F `  ( C  +  R ) ) ) )
14295simp3d 1075 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F `  ( C  +  R ) )  <_ 
y )
143 simprlr 803 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  y  e.  RR )
144 ltletr 10129 . . . . . . . . . 10  |-  ( ( ( F `  C
)  e.  RR  /\  ( F `  ( C  +  R ) )  e.  RR  /\  y  e.  RR )  ->  (
( ( F `  C )  <  ( F `  ( C  +  R ) )  /\  ( F `  ( C  +  R ) )  <_  y )  -> 
( F `  C
)  <  y )
)
14522, 99, 143, 144syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( ( F `  C )  <  ( F `  ( C  +  R ) )  /\  ( F `  ( C  +  R ) )  <_  y )  -> 
( F `  C
)  <  y )
)
146142, 145mpan2d 710 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F `  C
)  <  ( F `  ( C  +  R
) )  ->  ( F `  C )  <  y ) )
147141, 146syld 47 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  <  ( ( ( C  -  R ) [,] ( C  +  R )
) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) )  ->  ( F `  C )  <  y
) )
148 isorel 6576 . . . . . . . . . . . . 13  |-  ( ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R
) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  /\  ( ( C  -  R )  e.  ( ( C  -  R ) [,] ( C  +  R
) )  /\  C  e.  ( ( C  -  R ) [,] ( C  +  R )
) ) )  -> 
( ( C  -  R )  <  C  <->  ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  -  R ) ) `'  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  C
) ) )
149148biimpd 219 . . . . . . . . . . . 12  |-  ( ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R
) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  /\  ( ( C  -  R )  e.  ( ( C  -  R ) [,] ( C  +  R
) )  /\  C  e.  ( ( C  -  R ) [,] ( C  +  R )
) ) )  -> 
( ( C  -  R )  <  C  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  ( C  -  R )
) `'  <  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  C ) ) )
150149exp32 631 . . . . . . . . . . 11  |-  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R
) [,] ( C  +  R ) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) )  -> 
( ( C  -  R )  e.  ( ( C  -  R
) [,] ( C  +  R ) )  ->  ( C  e.  ( ( C  -  R ) [,] ( C  +  R )
)  ->  ( ( C  -  R )  <  C  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  ( C  -  R
) ) `'  <  ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  C ) ) ) ) )
151150com4l 92 . . . . . . . . . 10  |-  ( ( C  -  R )  e.  ( ( C  -  R ) [,] ( C  +  R
) )  ->  ( C  e.  ( ( C  -  R ) [,] ( C  +  R
) )  ->  (
( C  -  R
)  <  C  ->  ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R
) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  ( C  -  R
) ) `'  <  ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  C ) ) ) ) )
15227, 33, 34, 151syl3c 66 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R
) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  ->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  ( C  -  R
) ) `'  <  ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  C ) ) )
153 fvex 6201 . . . . . . . . . . 11  |-  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  ( C  -  R
) )  e.  _V
154153, 81brcnv 5305 . . . . . . . . . 10  |-  ( ( ( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  ( C  -  R ) ) `'  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  C
)  <->  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  C
)  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  ( C  -  R
) ) )
15543, 41breq12d 4666 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  C
)  <  ( ( F  |`  ( ( C  -  R ) [,] ( C  +  R
) ) ) `  ( C  -  R
) )  <->  ( F `  C )  <  ( F `  ( C  -  R ) ) ) )
156154, 155syl5bb 272 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) ) `  ( C  -  R )
) `'  <  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) ) `  C )  <-> 
( F `  C
)  <  ( F `  ( C  -  R
) ) ) )
157152, 156sylibd 229 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R
) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  ->  ( F `  C )  <  ( F `  ( C  -  R ) ) ) )
15862simp3d 1075 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F `  ( C  -  R ) )  <_ 
y )
159 ltletr 10129 . . . . . . . . . 10  |-  ( ( ( F `  C
)  e.  RR  /\  ( F `  ( C  -  R ) )  e.  RR  /\  y  e.  RR )  ->  (
( ( F `  C )  <  ( F `  ( C  -  R ) )  /\  ( F `  ( C  -  R ) )  <_  y )  -> 
( F `  C
)  <  y )
)
16022, 67, 143, 159syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( ( F `  C )  <  ( F `  ( C  -  R ) )  /\  ( F `  ( C  -  R ) )  <_  y )  -> 
( F `  C
)  <  y )
)
161158, 160mpan2d 710 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F `  C
)  <  ( F `  ( C  -  R
) )  ->  ( F `  C )  <  y ) )
162157, 161syld 47 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F  |`  (
( C  -  R
) [,] ( C  +  R ) ) )  Isom  <  ,  `'  <  ( ( ( C  -  R ) [,] ( C  +  R
) ) ,  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R ) ) ) )  ->  ( F `  C )  <  y
) )
163147, 162, 133mpjaod 396 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F `  C )  <  y )
16464rexrd 10089 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  x  e.  RR* )
165143rexrd 10089 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  y  e.  RR* )
166 elioo2 12216 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
( F `  C
)  e.  ( x (,) y )  <->  ( ( F `  C )  e.  RR  /\  x  < 
( F `  C
)  /\  ( F `  C )  <  y
) ) )
167164, 165, 166syl2anc 693 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( F `  C
)  e.  ( x (,) y )  <->  ( ( F `  C )  e.  RR  /\  x  < 
( F `  C
)  /\  ( F `  C )  <  y
) ) )
16822, 134, 163, 167mpbir3and 1245 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F `  C )  e.  ( x (,) y
) )
16958fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( int `  ( topGen `
 ran  (,) )
) `  ( F " ( ( C  -  R ) [,] ( C  +  R )
) ) )  =  ( ( int `  ( topGen `
 ran  (,) )
) `  ( x [,] y ) ) )
170 iccntr 22624 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( x [,] y ) )  =  ( x (,) y
) )
171170ad2antrl 764 . . . . . 6  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( int `  ( topGen `
 ran  (,) )
) `  ( x [,] y ) )  =  ( x (,) y
) )
172169, 171eqtrd 2656 . . . . 5  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  (
( int `  ( topGen `
 ran  (,) )
) `  ( F " ( ( C  -  R ) [,] ( C  +  R )
) ) )  =  ( x (,) y
) )
173168, 172eleqtrrd 2704 . . . 4  |-  ( (
ph  /\  ( (
x  e.  RR  /\  y  e.  RR )  /\  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y ) ) )  ->  ( F `  C )  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( F " ( ( C  -  R ) [,] ( C  +  R )
) ) ) )
174173expr 643 . . 3  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y )  ->  ( F `  C )  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( F " ( ( C  -  R ) [,] ( C  +  R )
) ) ) ) )
175174rexlimdvva 3038 . 2  |-  ( ph  ->  ( E. x  e.  RR  E. y  e.  RR  ran  ( F  |`  ( ( C  -  R ) [,] ( C  +  R )
) )  =  ( x [,] y )  ->  ( F `  C )  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( F " ( ( C  -  R ) [,] ( C  +  R )
) ) ) ) )
17618, 175mpd 15 1  |-  ( ph  ->  ( F `  C
)  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( F " ( ( C  -  R ) [,] ( C  +  R ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    i^i cin 3573    C_ wss 3574   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821   -cn->ccncf 22679    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvcnvrelem2  23781
  Copyright terms: Public domain W3C validator