Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem3-rN Structured version   Visualization version   Unicode version

Theorem erngdvlem3-rN 36286
Description: Lemma for eringring 36280. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r  |-  H  =  ( LHyp `  K
)
ernggrp.d-r  |-  D  =  ( ( EDRingR `  K ) `  W
)
ernggrplem.b-r  |-  B  =  ( Base `  K
)
ernggrplem.t-r  |-  T  =  ( ( LTrn `  K
) `  W )
ernggrplem.e-r  |-  E  =  ( ( TEndo `  K
) `  W )
ernggrplem.p-r  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
b `  f )
) ) )
ernggrplem.o-r  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
ernggrplem.i-r  |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' ( a `  f ) ) )
erngrnglem.m-r  |-  M  =  ( a  e.  E ,  b  e.  E  |->  ( b  o.  a
) )
Assertion
Ref Expression
erngdvlem3-rN  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
Distinct variable groups:    B, f    a, b, E    f, a, K, b    f, H    T, a, b, f    W, a, b, f
Allowed substitution hints:    B( a, b)    D( f, a, b)    P( f, a, b)    E( f)    H( a, b)    I( f, a, b)    M( f, a, b)    O( f, a, b)

Proof of Theorem erngdvlem3-rN
Dummy variables  t 
s  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h-r . . . 4  |-  H  =  ( LHyp `  K
)
2 ernggrplem.t-r . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 ernggrplem.e-r . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
4 ernggrp.d-r . . . 4  |-  D  =  ( ( EDRingR `  K ) `  W
)
5 eqid 2622 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
61, 2, 3, 4, 5erngbase-rN 36097 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
76eqcomd 2628 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E  =  ( Base `  D ) )
8 eqid 2622 . . . 4  |-  ( +g  `  D )  =  ( +g  `  D )
91, 2, 3, 4, 8erngfplus-rN 36098 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  D
)  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  ( b `  f ) ) ) ) )
10 ernggrplem.p-r . . 3  |-  P  =  ( a  e.  E ,  b  e.  E  |->  ( f  e.  T  |->  ( ( a `  f )  o.  (
b `  f )
) ) )
119, 10syl6reqr 2675 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  P  =  ( +g  `  D ) )
12 eqid 2622 . . . 4  |-  ( .r
`  D )  =  ( .r `  D
)
131, 2, 3, 4, 12erngfmul-rN 36101 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( .r `  D
)  =  ( a  e.  E ,  b  e.  E  |->  ( b  o.  a ) ) )
14 erngrnglem.m-r . . 3  |-  M  =  ( a  e.  E ,  b  e.  E  |->  ( b  o.  a
) )
1513, 14syl6reqr 2675 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  M  =  ( .r
`  D ) )
16 ernggrplem.b-r . . 3  |-  B  =  ( Base `  K
)
17 ernggrplem.o-r . . 3  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
18 ernggrplem.i-r . . 3  |-  I  =  ( a  e.  E  |->  ( f  e.  T  |->  `' ( a `  f ) ) )
191, 4, 16, 2, 3, 10, 17, 18erngdvlem1-rN 36284 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Grp )
2015oveqd 6667 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s M t )  =  ( s ( .r `  D
) t ) )
21203ad2ant1 1082 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s M t )  =  ( s ( .r
`  D ) t ) )
221, 2, 3, 4, 12erngmul-rN 36102 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E ) )  -> 
( s ( .r
`  D ) t )  =  ( t  o.  s ) )
23223impb 1260 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s
( .r `  D
) t )  =  ( t  o.  s
) )
2421, 23eqtrd 2656 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s M t )  =  ( t  o.  s
) )
251, 3tendococl 36060 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  s  e.  E
)  ->  ( t  o.  s )  e.  E
)
26253com23 1271 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( t  o.  s )  e.  E
)
2724, 26eqeltrd 2701 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s M t )  e.  E )
2815oveqdr 6674 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t M u )  =  ( t ( .r `  D
) u ) )
291, 2, 3, 4, 12erngmul-rN 36102 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  u  e.  E ) )  -> 
( t ( .r
`  D ) u )  =  ( u  o.  t ) )
30293adantr1 1220 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t ( .r
`  D ) u )  =  ( u  o.  t ) )
3128, 30eqtrd 2656 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t M u )  =  ( u  o.  t ) )
3231coeq1d 5283 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( t M u )  o.  s
)  =  ( ( u  o.  t )  o.  s ) )
3315oveqd 6667 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s M ( t M u ) )  =  ( s ( .r `  D
) ( t M u ) ) )
3433adantr 481 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t M u ) )  =  ( s ( .r `  D
) ( t M u ) ) )
35 simpl 473 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
36 simpr1 1067 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
s  e.  E )
37 simpr3 1069 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  ->  u  e.  E )
38 simpr2 1068 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
t  e.  E )
391, 3tendococl 36060 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  u  e.  E  /\  t  e.  E
)  ->  ( u  o.  t )  e.  E
)
4035, 37, 38, 39syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( u  o.  t
)  e.  E )
4131, 40eqeltrd 2701 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t M u )  e.  E )
421, 2, 3, 4, 12erngmul-rN 36102 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t M u )  e.  E ) )  -> 
( s ( .r
`  D ) ( t M u ) )  =  ( ( t M u )  o.  s ) )
4335, 36, 41, 42syl12anc 1324 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) ( t M u ) )  =  ( ( t M u )  o.  s ) )
4434, 43eqtrd 2656 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t M u ) )  =  ( ( t M u )  o.  s ) )
4515oveqd 6667 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( s M t ) M u )  =  ( ( s M t ) ( .r `  D
) u ) )
4645adantr 481 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) M u )  =  ( ( s M t ) ( .r `  D
) u ) )
47273adant3r3 1276 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M t )  e.  E )
481, 2, 3, 4, 12erngmul-rN 36102 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s M t )  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) ( .r
`  D ) u )  =  ( u  o.  ( s M t ) ) )
4935, 47, 37, 48syl12anc 1324 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) ( .r
`  D ) u )  =  ( u  o.  ( s M t ) ) )
5015oveqdr 6674 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M t )  =  ( s ( .r `  D
) t ) )
51223adantr3 1222 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) t )  =  ( t  o.  s ) )
5250, 51eqtrd 2656 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M t )  =  ( t  o.  s ) )
5352coeq2d 5284 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( u  o.  (
s M t ) )  =  ( u  o.  ( t  o.  s ) ) )
5446, 49, 533eqtrd 2660 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) M u )  =  ( u  o.  ( t  o.  s ) ) )
55 coass 5654 . . . 4  |-  ( ( u  o.  t )  o.  s )  =  ( u  o.  (
t  o.  s ) )
5654, 55syl6eqr 2674 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) M u )  =  ( ( u  o.  t )  o.  s ) )
5732, 44, 563eqtr4rd 2667 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) M u )  =  ( s M ( t M u ) ) )
581, 2, 3, 10tendodi2 36073 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  u  e.  E  /\  s  e.  E ) )  -> 
( ( t P u )  o.  s
)  =  ( ( t  o.  s ) P ( u  o.  s ) ) )
5935, 38, 37, 36, 58syl13anc 1328 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( t P u )  o.  s
)  =  ( ( t  o.  s ) P ( u  o.  s ) ) )
6015oveqd 6667 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s M ( t P u ) )  =  ( s ( .r `  D
) ( t P u ) ) )
6160adantr 481 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t P u ) )  =  ( s ( .r `  D
) ( t P u ) ) )
621, 2, 3, 10tendoplcl 36069 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  u  e.  E
)  ->  ( t P u )  e.  E )
6335, 38, 37, 62syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( t P u )  e.  E )
641, 2, 3, 4, 12erngmul-rN 36102 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t P u )  e.  E ) )  -> 
( s ( .r
`  D ) ( t P u ) )  =  ( ( t P u )  o.  s ) )
6535, 36, 63, 64syl12anc 1324 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) ( t P u ) )  =  ( ( t P u )  o.  s ) )
6661, 65eqtrd 2656 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t P u ) )  =  ( ( t P u )  o.  s ) )
6715oveqdr 6674 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M u )  =  ( s ( .r `  D
) u ) )
681, 2, 3, 4, 12erngmul-rN 36102 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) u )  =  ( u  o.  s ) )
69683adantr2 1221 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s ( .r
`  D ) u )  =  ( u  o.  s ) )
7067, 69eqtrd 2656 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M u )  =  ( u  o.  s ) )
7152, 70oveq12d 6668 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M t ) P ( s M u ) )  =  ( ( t  o.  s ) P ( u  o.  s ) ) )
7259, 66, 713eqtr4d 2666 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s M ( t P u ) )  =  ( ( s M t ) P ( s M u ) ) )
731, 2, 3, 10tendodi1 36072 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  E  /\  s  e.  E  /\  t  e.  E ) )  -> 
( u  o.  (
s P t ) )  =  ( ( u  o.  s ) P ( u  o.  t ) ) )
7435, 37, 36, 38, 73syl13anc 1328 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( u  o.  (
s P t ) )  =  ( ( u  o.  s ) P ( u  o.  t ) ) )
7515adantr 481 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  ->  M  =  ( .r `  D ) )
7675oveqd 6667 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) M u )  =  ( ( s P t ) ( .r `  D
) u ) )
771, 2, 3, 10tendoplcl 36069 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s P t )  e.  E )
78773adant3r3 1276 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( s P t )  e.  E )
791, 2, 3, 4, 12erngmul-rN 36102 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s P t )  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) ( .r
`  D ) u )  =  ( u  o.  ( s P t ) ) )
8035, 78, 37, 79syl12anc 1324 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) ( .r
`  D ) u )  =  ( u  o.  ( s P t ) ) )
8176, 80eqtrd 2656 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) M u )  =  ( u  o.  ( s P t ) ) )
8270, 31oveq12d 6668 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s M u ) P ( t M u ) )  =  ( ( u  o.  s ) P ( u  o.  t ) ) )
8374, 81, 823eqtr4d 2666 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  u  e.  E ) )  -> 
( ( s P t ) M u )  =  ( ( s M u ) P ( t M u ) ) )
841, 2, 3tendoidcl 36057 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
8515oveqd 6667 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  T ) M s )  =  ( (  _I  |`  T ) ( .r `  D
) s ) )
8685adantr 481 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( (  _I  |`  T ) M s )  =  ( (  _I  |`  T ) ( .r `  D
) s ) )
87 simpl 473 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( K  e.  HL  /\  W  e.  H ) )
8884adantr 481 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  (  _I  |`  T )  e.  E
)
89 simpr 477 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  s  e.  E )
901, 2, 3, 4, 12erngmul-rN 36102 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  T )  e.  E  /\  s  e.  E
) )  ->  (
(  _I  |`  T ) ( .r `  D
) s )  =  ( s  o.  (  _I  |`  T ) ) )
9187, 88, 89, 90syl12anc 1324 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( (  _I  |`  T ) ( .r `  D ) s )  =  ( s  o.  (  _I  |`  T ) ) )
921, 2, 3tendo1mulr 36059 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s  o.  (  _I  |`  T ) )  =  s )
9386, 91, 923eqtrd 2660 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( (  _I  |`  T ) M s )  =  s )
9415oveqd 6667 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s M (  _I  |`  T )
)  =  ( s ( .r `  D
) (  _I  |`  T ) ) )
9594adantr 481 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s M (  _I  |`  T ) )  =  ( s ( .r `  D
) (  _I  |`  T ) ) )
961, 2, 3, 4, 12erngmul-rN 36102 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  (  _I  |`  T )  e.  E
) )  ->  (
s ( .r `  D ) (  _I  |`  T ) )  =  ( (  _I  |`  T )  o.  s ) )
9787, 89, 88, 96syl12anc 1324 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s
( .r `  D
) (  _I  |`  T ) )  =  ( (  _I  |`  T )  o.  s ) )
981, 2, 3tendo1mul 36058 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( (  _I  |`  T )  o.  s )  =  s )
9995, 97, 983eqtrd 2660 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E
)  ->  ( s M (  _I  |`  T ) )  =  s )
1007, 11, 15, 19, 27, 57, 72, 83, 84, 93, 99isringd 18585 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    |-> cmpt 4729    _I cid 5023   `'ccnv 5113    |` cres 5116    o. ccom 5118   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   Ringcrg 18547   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   EDRingRcedring-rN 36042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ring 18549  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring-rN 36044
This theorem is referenced by:  erngdvlem4-rN  36287  erngring-rN  36288
  Copyright terms: Public domain W3C validator