| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erngdvlem3-rN | Structured version Visualization version Unicode version | ||
| Description: Lemma for eringring 36280. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ernggrp.h-r |
|
| ernggrp.d-r |
|
| ernggrplem.b-r |
|
| ernggrplem.t-r |
|
| ernggrplem.e-r |
|
| ernggrplem.p-r |
|
| ernggrplem.o-r |
|
| ernggrplem.i-r |
|
| erngrnglem.m-r |
|
| Ref | Expression |
|---|---|
| erngdvlem3-rN |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ernggrp.h-r |
. . . 4
| |
| 2 | ernggrplem.t-r |
. . . 4
| |
| 3 | ernggrplem.e-r |
. . . 4
| |
| 4 | ernggrp.d-r |
. . . 4
| |
| 5 | eqid 2622 |
. . . 4
| |
| 6 | 1, 2, 3, 4, 5 | erngbase-rN 36097 |
. . 3
|
| 7 | 6 | eqcomd 2628 |
. 2
|
| 8 | eqid 2622 |
. . . 4
| |
| 9 | 1, 2, 3, 4, 8 | erngfplus-rN 36098 |
. . 3
|
| 10 | ernggrplem.p-r |
. . 3
| |
| 11 | 9, 10 | syl6reqr 2675 |
. 2
|
| 12 | eqid 2622 |
. . . 4
| |
| 13 | 1, 2, 3, 4, 12 | erngfmul-rN 36101 |
. . 3
|
| 14 | erngrnglem.m-r |
. . 3
| |
| 15 | 13, 14 | syl6reqr 2675 |
. 2
|
| 16 | ernggrplem.b-r |
. . 3
| |
| 17 | ernggrplem.o-r |
. . 3
| |
| 18 | ernggrplem.i-r |
. . 3
| |
| 19 | 1, 4, 16, 2, 3, 10, 17, 18 | erngdvlem1-rN 36284 |
. 2
|
| 20 | 15 | oveqd 6667 |
. . . . 5
|
| 21 | 20 | 3ad2ant1 1082 |
. . . 4
|
| 22 | 1, 2, 3, 4, 12 | erngmul-rN 36102 |
. . . . 5
|
| 23 | 22 | 3impb 1260 |
. . . 4
|
| 24 | 21, 23 | eqtrd 2656 |
. . 3
|
| 25 | 1, 3 | tendococl 36060 |
. . . 4
|
| 26 | 25 | 3com23 1271 |
. . 3
|
| 27 | 24, 26 | eqeltrd 2701 |
. 2
|
| 28 | 15 | oveqdr 6674 |
. . . . 5
|
| 29 | 1, 2, 3, 4, 12 | erngmul-rN 36102 |
. . . . . 6
|
| 30 | 29 | 3adantr1 1220 |
. . . . 5
|
| 31 | 28, 30 | eqtrd 2656 |
. . . 4
|
| 32 | 31 | coeq1d 5283 |
. . 3
|
| 33 | 15 | oveqd 6667 |
. . . . 5
|
| 34 | 33 | adantr 481 |
. . . 4
|
| 35 | simpl 473 |
. . . . 5
| |
| 36 | simpr1 1067 |
. . . . 5
| |
| 37 | simpr3 1069 |
. . . . . . 7
| |
| 38 | simpr2 1068 |
. . . . . . 7
| |
| 39 | 1, 3 | tendococl 36060 |
. . . . . . 7
|
| 40 | 35, 37, 38, 39 | syl3anc 1326 |
. . . . . 6
|
| 41 | 31, 40 | eqeltrd 2701 |
. . . . 5
|
| 42 | 1, 2, 3, 4, 12 | erngmul-rN 36102 |
. . . . 5
|
| 43 | 35, 36, 41, 42 | syl12anc 1324 |
. . . 4
|
| 44 | 34, 43 | eqtrd 2656 |
. . 3
|
| 45 | 15 | oveqd 6667 |
. . . . . 6
|
| 46 | 45 | adantr 481 |
. . . . 5
|
| 47 | 27 | 3adant3r3 1276 |
. . . . . 6
|
| 48 | 1, 2, 3, 4, 12 | erngmul-rN 36102 |
. . . . . 6
|
| 49 | 35, 47, 37, 48 | syl12anc 1324 |
. . . . 5
|
| 50 | 15 | oveqdr 6674 |
. . . . . . 7
|
| 51 | 22 | 3adantr3 1222 |
. . . . . . 7
|
| 52 | 50, 51 | eqtrd 2656 |
. . . . . 6
|
| 53 | 52 | coeq2d 5284 |
. . . . 5
|
| 54 | 46, 49, 53 | 3eqtrd 2660 |
. . . 4
|
| 55 | coass 5654 |
. . . 4
| |
| 56 | 54, 55 | syl6eqr 2674 |
. . 3
|
| 57 | 32, 44, 56 | 3eqtr4rd 2667 |
. 2
|
| 58 | 1, 2, 3, 10 | tendodi2 36073 |
. . . 4
|
| 59 | 35, 38, 37, 36, 58 | syl13anc 1328 |
. . 3
|
| 60 | 15 | oveqd 6667 |
. . . . 5
|
| 61 | 60 | adantr 481 |
. . . 4
|
| 62 | 1, 2, 3, 10 | tendoplcl 36069 |
. . . . . 6
|
| 63 | 35, 38, 37, 62 | syl3anc 1326 |
. . . . 5
|
| 64 | 1, 2, 3, 4, 12 | erngmul-rN 36102 |
. . . . 5
|
| 65 | 35, 36, 63, 64 | syl12anc 1324 |
. . . 4
|
| 66 | 61, 65 | eqtrd 2656 |
. . 3
|
| 67 | 15 | oveqdr 6674 |
. . . . 5
|
| 68 | 1, 2, 3, 4, 12 | erngmul-rN 36102 |
. . . . . 6
|
| 69 | 68 | 3adantr2 1221 |
. . . . 5
|
| 70 | 67, 69 | eqtrd 2656 |
. . . 4
|
| 71 | 52, 70 | oveq12d 6668 |
. . 3
|
| 72 | 59, 66, 71 | 3eqtr4d 2666 |
. 2
|
| 73 | 1, 2, 3, 10 | tendodi1 36072 |
. . . 4
|
| 74 | 35, 37, 36, 38, 73 | syl13anc 1328 |
. . 3
|
| 75 | 15 | adantr 481 |
. . . . 5
|
| 76 | 75 | oveqd 6667 |
. . . 4
|
| 77 | 1, 2, 3, 10 | tendoplcl 36069 |
. . . . . 6
|
| 78 | 77 | 3adant3r3 1276 |
. . . . 5
|
| 79 | 1, 2, 3, 4, 12 | erngmul-rN 36102 |
. . . . 5
|
| 80 | 35, 78, 37, 79 | syl12anc 1324 |
. . . 4
|
| 81 | 76, 80 | eqtrd 2656 |
. . 3
|
| 82 | 70, 31 | oveq12d 6668 |
. . 3
|
| 83 | 74, 81, 82 | 3eqtr4d 2666 |
. 2
|
| 84 | 1, 2, 3 | tendoidcl 36057 |
. 2
|
| 85 | 15 | oveqd 6667 |
. . . 4
|
| 86 | 85 | adantr 481 |
. . 3
|
| 87 | simpl 473 |
. . . 4
| |
| 88 | 84 | adantr 481 |
. . . 4
|
| 89 | simpr 477 |
. . . 4
| |
| 90 | 1, 2, 3, 4, 12 | erngmul-rN 36102 |
. . . 4
|
| 91 | 87, 88, 89, 90 | syl12anc 1324 |
. . 3
|
| 92 | 1, 2, 3 | tendo1mulr 36059 |
. . 3
|
| 93 | 86, 91, 92 | 3eqtrd 2660 |
. 2
|
| 94 | 15 | oveqd 6667 |
. . . 4
|
| 95 | 94 | adantr 481 |
. . 3
|
| 96 | 1, 2, 3, 4, 12 | erngmul-rN 36102 |
. . . 4
|
| 97 | 87, 89, 88, 96 | syl12anc 1324 |
. . 3
|
| 98 | 1, 2, 3 | tendo1mul 36058 |
. . 3
|
| 99 | 95, 97, 98 | 3eqtrd 2660 |
. 2
|
| 100 | 7, 11, 15, 19, 27, 57, 72, 83, 84, 93, 99 | isringd 18585 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-mulr 15955 df-0g 16102 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-mgp 18490 df-ring 18549 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tendo 36043 df-edring-rN 36044 |
| This theorem is referenced by: erngdvlem4-rN 36287 erngring-rN 36288 |
| Copyright terms: Public domain | W3C validator |