Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhlveclem Structured version   Visualization version   Unicode version

Theorem dvhlveclem 36397
Description: Lemma for dvhlvec 36398. TODO: proof substituting inner part first shorter/longer than substituting outer part first? TODO: break up into smaller lemmas? TODO: does  ph  -> method shorten proof? (Contributed by NM, 22-Oct-2013.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvhgrp.b  |-  B  =  ( Base `  K
)
dvhgrp.h  |-  H  =  ( LHyp `  K
)
dvhgrp.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvhgrp.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvhgrp.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhgrp.d  |-  D  =  (Scalar `  U )
dvhgrp.p  |-  .+^  =  ( +g  `  D )
dvhgrp.a  |-  .+  =  ( +g  `  U )
dvhgrp.o  |-  .0.  =  ( 0g `  D )
dvhgrp.i  |-  I  =  ( invg `  D )
dvhlvec.m  |-  .X.  =  ( .r `  D )
dvhlvec.s  |-  .x.  =  ( .s `  U )
Assertion
Ref Expression
dvhlveclem  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LVec )

Proof of Theorem dvhlveclem
Dummy variables  t 
f  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhgrp.h . . . . 5  |-  H  =  ( LHyp `  K
)
2 dvhgrp.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
3 dvhgrp.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
4 dvhgrp.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
5 eqid 2622 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
61, 2, 3, 4, 5dvhvbase 36376 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  ( T  X.  E ) )
76eqcomd 2628 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( T  X.  E
)  =  ( Base `  U ) )
8 dvhgrp.a . . . 4  |-  .+  =  ( +g  `  U )
98a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .+  =  ( +g  `  U ) )
10 dvhgrp.d . . . 4  |-  D  =  (Scalar `  U )
1110a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  (Scalar `  U ) )
12 dvhlvec.s . . . 4  |-  .x.  =  ( .s `  U )
1312a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .x.  =  ( .s
`  U ) )
14 eqid 2622 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
151, 3, 4, 10, 14dvhbase 36372 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  D
)  =  E )
1615eqcomd 2628 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E  =  ( Base `  D ) )
17 dvhgrp.p . . . 4  |-  .+^  =  ( +g  `  D )
1817a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
.+^  =  ( +g  `  D ) )
19 dvhlvec.m . . . 4  |-  .X.  =  ( .r `  D )
2019a1i 11 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .X.  =  ( .r
`  D ) )
21 eqid 2622 . . . . . 6  |-  ( (
EDRing `  K ) `  W )  =  ( ( EDRing `  K ) `  W )
221, 21, 4, 10dvhsca 36371 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  =  ( (
EDRing `  K ) `  W ) )
2322fveq2d 6195 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 1r `  D
)  =  ( 1r
`  ( ( EDRing `  K ) `  W
) ) )
24 eqid 2622 . . . . 5  |-  ( 1r
`  ( ( EDRing `  K ) `  W
) )  =  ( 1r `  ( (
EDRing `  K ) `  W ) )
251, 2, 21, 24erng1r 36283 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 1r `  (
( EDRing `  K ) `  W ) )  =  (  _I  |`  T ) )
2623, 25eqtr2d 2657 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =  ( 1r `  D ) )
271, 21erngdv 36281 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( EDRing `  K
) `  W )  e.  DivRing )
2822, 27eqeltrd 2701 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  DivRing )
29 drngring 18754 . . . 4  |-  ( D  e.  DivRing  ->  D  e.  Ring )
3028, 29syl 17 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  D  e.  Ring )
31 dvhgrp.b . . . 4  |-  B  =  ( Base `  K
)
32 dvhgrp.o . . . 4  |-  .0.  =  ( 0g `  D )
33 dvhgrp.i . . . 4  |-  I  =  ( invg `  D )
3431, 1, 2, 3, 4, 10, 17, 8, 32, 33dvhgrp 36396 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Grp )
351, 2, 3, 4, 12dvhvscacl 36392 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
) ) )  -> 
( s  .x.  t
)  e.  ( T  X.  E ) )
36353impb 1260 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  ( T  X.  E ) )  ->  ( s  .x.  t )  e.  ( T  X.  E ) )
37 simpl 473 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
38 simpr1 1067 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
s  e.  E )
39 simpr2 1068 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
t  e.  ( T  X.  E ) )
40 xp1st 7198 . . . . . . . 8  |-  ( t  e.  ( T  X.  E )  ->  ( 1st `  t )  e.  T )
4139, 40syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  t
)  e.  T )
42 simpr3 1069 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
f  e.  ( T  X.  E ) )
43 xp1st 7198 . . . . . . . 8  |-  ( f  e.  ( T  X.  E )  ->  ( 1st `  f )  e.  T )
4442, 43syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  f
)  e.  T )
451, 2, 3tendospdi1 36309 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( 1st `  t )  e.  T  /\  ( 1st `  f
)  e.  T ) )  ->  ( s `  ( ( 1st `  t
)  o.  ( 1st `  f ) ) )  =  ( ( s `
 ( 1st `  t
) )  o.  (
s `  ( 1st `  f ) ) ) )
4637, 38, 41, 44, 45syl13anc 1328 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s `  (
( 1st `  t
)  o.  ( 1st `  f ) ) )  =  ( ( s `
 ( 1st `  t
) )  o.  (
s `  ( 1st `  f ) ) ) )
471, 2, 3, 4, 10, 8, 17dvhvadd 36381 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .+  f
)  =  <. (
( 1st `  t
)  o.  ( 1st `  f ) ) ,  ( ( 2nd `  t
)  .+^  ( 2nd `  f
) ) >. )
48473adantr1 1220 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .+  f
)  =  <. (
( 1st `  t
)  o.  ( 1st `  f ) ) ,  ( ( 2nd `  t
)  .+^  ( 2nd `  f
) ) >. )
4948fveq2d 6195 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
t  .+  f )
)  =  ( 1st `  <. ( ( 1st `  t )  o.  ( 1st `  f ) ) ,  ( ( 2nd `  t )  .+^  ( 2nd `  f ) ) >.
) )
50 fvex 6201 . . . . . . . . . 10  |-  ( 1st `  t )  e.  _V
51 fvex 6201 . . . . . . . . . 10  |-  ( 1st `  f )  e.  _V
5250, 51coex 7118 . . . . . . . . 9  |-  ( ( 1st `  t )  o.  ( 1st `  f
) )  e.  _V
53 ovex 6678 . . . . . . . . 9  |-  ( ( 2nd `  t ) 
.+^  ( 2nd `  f
) )  e.  _V
5452, 53op1st 7176 . . . . . . . 8  |-  ( 1st `  <. ( ( 1st `  t )  o.  ( 1st `  f ) ) ,  ( ( 2nd `  t )  .+^  ( 2nd `  f ) ) >.
)  =  ( ( 1st `  t )  o.  ( 1st `  f
) )
5549, 54syl6eq 2672 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
t  .+  f )
)  =  ( ( 1st `  t )  o.  ( 1st `  f
) ) )
5655fveq2d 6195 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s `  ( 1st `  ( t  .+  f ) ) )  =  ( s `  ( ( 1st `  t
)  o.  ( 1st `  f ) ) ) )
571, 2, 3, 4, 12dvhvsca 36390 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
) ) )  -> 
( s  .x.  t
)  =  <. (
s `  ( 1st `  t ) ) ,  ( s  o.  ( 2nd `  t ) )
>. )
58573adantr3 1222 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  t
)  =  <. (
s `  ( 1st `  t ) ) ,  ( s  o.  ( 2nd `  t ) )
>. )
5958fveq2d 6195 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
s  .x.  t )
)  =  ( 1st `  <. ( s `  ( 1st `  t ) ) ,  ( s  o.  ( 2nd `  t
) ) >. )
)
60 fvex 6201 . . . . . . . . 9  |-  ( s `
 ( 1st `  t
) )  e.  _V
61 vex 3203 . . . . . . . . . 10  |-  s  e. 
_V
62 fvex 6201 . . . . . . . . . 10  |-  ( 2nd `  t )  e.  _V
6361, 62coex 7118 . . . . . . . . 9  |-  ( s  o.  ( 2nd `  t
) )  e.  _V
6460, 63op1st 7176 . . . . . . . 8  |-  ( 1st `  <. ( s `  ( 1st `  t ) ) ,  ( s  o.  ( 2nd `  t
) ) >. )  =  ( s `  ( 1st `  t ) )
6559, 64syl6eq 2672 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
s  .x.  t )
)  =  ( s `
 ( 1st `  t
) ) )
661, 2, 3, 4, 12dvhvsca 36390 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  f
)  =  <. (
s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f ) )
>. )
67663adantr2 1221 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  f
)  =  <. (
s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f ) )
>. )
6867fveq2d 6195 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
s  .x.  f )
)  =  ( 1st `  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
)
69 fvex 6201 . . . . . . . . 9  |-  ( s `
 ( 1st `  f
) )  e.  _V
70 fvex 6201 . . . . . . . . . 10  |-  ( 2nd `  f )  e.  _V
7161, 70coex 7118 . . . . . . . . 9  |-  ( s  o.  ( 2nd `  f
) )  e.  _V
7269, 71op1st 7176 . . . . . . . 8  |-  ( 1st `  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )  =  ( s `  ( 1st `  f ) )
7368, 72syl6eq 2672 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
s  .x.  f )
)  =  ( s `
 ( 1st `  f
) ) )
7465, 73coeq12d 5286 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  (
s  .x.  t )
)  o.  ( 1st `  ( s  .x.  f
) ) )  =  ( ( s `  ( 1st `  t ) )  o.  ( s `
 ( 1st `  f
) ) ) )
7546, 56, 743eqtr4d 2666 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s `  ( 1st `  ( t  .+  f ) ) )  =  ( ( 1st `  ( s  .x.  t
) )  o.  ( 1st `  ( s  .x.  f ) ) ) )
7630adantr 481 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  ->  D  e.  Ring )
7716adantr 481 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  ->  E  =  ( Base `  D ) )
7838, 77eleqtrd 2703 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
s  e.  ( Base `  D ) )
79 xp2nd 7199 . . . . . . . . . 10  |-  ( t  e.  ( T  X.  E )  ->  ( 2nd `  t )  e.  E )
8039, 79syl 17 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  t
)  e.  E )
8180, 77eleqtrd 2703 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  t
)  e.  ( Base `  D ) )
82 xp2nd 7199 . . . . . . . . . 10  |-  ( f  e.  ( T  X.  E )  ->  ( 2nd `  f )  e.  E )
8342, 82syl 17 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  f
)  e.  E )
8483, 77eleqtrd 2703 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  f
)  e.  ( Base `  D ) )
8514, 17, 19ringdi 18566 . . . . . . . 8  |-  ( ( D  e.  Ring  /\  (
s  e.  ( Base `  D )  /\  ( 2nd `  t )  e.  ( Base `  D
)  /\  ( 2nd `  f )  e.  (
Base `  D )
) )  ->  (
s  .X.  ( ( 2nd `  t )  .+^  ( 2nd `  f ) ) )  =  ( ( s  .X.  ( 2nd `  t ) ) 
.+^  ( s  .X.  ( 2nd `  f ) ) ) )
8676, 78, 81, 84, 85syl13anc 1328 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .X.  (
( 2nd `  t
)  .+^  ( 2nd `  f
) ) )  =  ( ( s  .X.  ( 2nd `  t ) )  .+^  ( s  .X.  ( 2nd `  f
) ) ) )
8714, 17ringacl 18578 . . . . . . . . . 10  |-  ( ( D  e.  Ring  /\  ( 2nd `  t )  e.  ( Base `  D
)  /\  ( 2nd `  f )  e.  (
Base `  D )
)  ->  ( ( 2nd `  t )  .+^  ( 2nd `  f ) )  e.  ( Base `  D ) )
8876, 81, 84, 87syl3anc 1326 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  t
)  .+^  ( 2nd `  f
) )  e.  (
Base `  D )
)
8988, 77eleqtrrd 2704 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  t
)  .+^  ( 2nd `  f
) )  e.  E
)
901, 2, 3, 4, 10, 19dvhmulr 36375 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( ( 2nd `  t ) 
.+^  ( 2nd `  f
) )  e.  E
) )  ->  (
s  .X.  ( ( 2nd `  t )  .+^  ( 2nd `  f ) ) )  =  ( s  o.  ( ( 2nd `  t ) 
.+^  ( 2nd `  f
) ) ) )
9137, 38, 89, 90syl12anc 1324 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .X.  (
( 2nd `  t
)  .+^  ( 2nd `  f
) ) )  =  ( s  o.  (
( 2nd `  t
)  .+^  ( 2nd `  f
) ) ) )
921, 2, 3, 4, 10, 19dvhmulr 36375 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( 2nd `  t )  e.  E
) )  ->  (
s  .X.  ( 2nd `  t ) )  =  ( s  o.  ( 2nd `  t ) ) )
9337, 38, 80, 92syl12anc 1324 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .X.  ( 2nd `  t ) )  =  ( s  o.  ( 2nd `  t
) ) )
941, 2, 3, 4, 10, 19dvhmulr 36375 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( 2nd `  f )  e.  E
) )  ->  (
s  .X.  ( 2nd `  f ) )  =  ( s  o.  ( 2nd `  f ) ) )
9537, 38, 83, 94syl12anc 1324 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .X.  ( 2nd `  f ) )  =  ( s  o.  ( 2nd `  f
) ) )
9693, 95oveq12d 6668 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .X.  ( 2nd `  t ) )  .+^  ( s  .X.  ( 2nd `  f
) ) )  =  ( ( s  o.  ( 2nd `  t
) )  .+^  ( s  o.  ( 2nd `  f
) ) ) )
9786, 91, 963eqtr3d 2664 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  o.  (
( 2nd `  t
)  .+^  ( 2nd `  f
) ) )  =  ( ( s  o.  ( 2nd `  t
) )  .+^  ( s  o.  ( 2nd `  f
) ) ) )
9848fveq2d 6195 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
t  .+  f )
)  =  ( 2nd `  <. ( ( 1st `  t )  o.  ( 1st `  f ) ) ,  ( ( 2nd `  t )  .+^  ( 2nd `  f ) ) >.
) )
9952, 53op2nd 7177 . . . . . . . 8  |-  ( 2nd `  <. ( ( 1st `  t )  o.  ( 1st `  f ) ) ,  ( ( 2nd `  t )  .+^  ( 2nd `  f ) ) >.
)  =  ( ( 2nd `  t ) 
.+^  ( 2nd `  f
) )
10098, 99syl6eq 2672 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
t  .+  f )
)  =  ( ( 2nd `  t ) 
.+^  ( 2nd `  f
) ) )
101100coeq2d 5284 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  o.  ( 2nd `  ( t  .+  f ) ) )  =  ( s  o.  ( ( 2nd `  t
)  .+^  ( 2nd `  f
) ) ) )
10258fveq2d 6195 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
s  .x.  t )
)  =  ( 2nd `  <. ( s `  ( 1st `  t ) ) ,  ( s  o.  ( 2nd `  t
) ) >. )
)
10360, 63op2nd 7177 . . . . . . . 8  |-  ( 2nd `  <. ( s `  ( 1st `  t ) ) ,  ( s  o.  ( 2nd `  t
) ) >. )  =  ( s  o.  ( 2nd `  t
) )
104102, 103syl6eq 2672 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
s  .x.  t )
)  =  ( s  o.  ( 2nd `  t
) ) )
10567fveq2d 6195 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
s  .x.  f )
)  =  ( 2nd `  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
)
10669, 71op2nd 7177 . . . . . . . 8  |-  ( 2nd `  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )  =  ( s  o.  ( 2nd `  f
) )
107105, 106syl6eq 2672 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
s  .x.  f )
)  =  ( s  o.  ( 2nd `  f
) ) )
108104, 107oveq12d 6668 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  (
s  .x.  t )
)  .+^  ( 2nd `  (
s  .x.  f )
) )  =  ( ( s  o.  ( 2nd `  t ) ) 
.+^  ( s  o.  ( 2nd `  f
) ) ) )
10997, 101, 1083eqtr4d 2666 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  o.  ( 2nd `  ( t  .+  f ) ) )  =  ( ( 2nd `  ( s  .x.  t
) )  .+^  ( 2nd `  ( s  .x.  f
) ) ) )
11075, 109opeq12d 4410 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  ->  <. ( s `  ( 1st `  ( t  .+  f ) ) ) ,  ( s  o.  ( 2nd `  (
t  .+  f )
) ) >.  =  <. ( ( 1st `  (
s  .x.  t )
)  o.  ( 1st `  ( s  .x.  f
) ) ) ,  ( ( 2nd `  (
s  .x.  t )
)  .+^  ( 2nd `  (
s  .x.  f )
) ) >. )
1111, 2, 3, 4, 10, 17, 8dvhvaddcl 36384 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .+  f
)  e.  ( T  X.  E ) )
1121113adantr1 1220 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .+  f
)  e.  ( T  X.  E ) )
1131, 2, 3, 4, 12dvhvsca 36390 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t 
.+  f )  e.  ( T  X.  E
) ) )  -> 
( s  .x.  (
t  .+  f )
)  =  <. (
s `  ( 1st `  ( t  .+  f
) ) ) ,  ( s  o.  ( 2nd `  ( t  .+  f ) ) )
>. )
11437, 38, 112, 113syl12anc 1324 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  (
t  .+  f )
)  =  <. (
s `  ( 1st `  ( t  .+  f
) ) ) ,  ( s  o.  ( 2nd `  ( t  .+  f ) ) )
>. )
115353adantr3 1222 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  t
)  e.  ( T  X.  E ) )
1161, 2, 3, 4, 12dvhvscacl 36392 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  f
)  e.  ( T  X.  E ) )
1171163adantr2 1221 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  f
)  e.  ( T  X.  E ) )
1181, 2, 3, 4, 10, 8, 17dvhvadd 36381 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s 
.x.  t )  e.  ( T  X.  E
)  /\  ( s  .x.  f )  e.  ( T  X.  E ) ) )  ->  (
( s  .x.  t
)  .+  ( s  .x.  f ) )  = 
<. ( ( 1st `  (
s  .x.  t )
)  o.  ( 1st `  ( s  .x.  f
) ) ) ,  ( ( 2nd `  (
s  .x.  t )
)  .+^  ( 2nd `  (
s  .x.  f )
) ) >. )
11937, 115, 117, 118syl12anc 1324 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .x.  t )  .+  (
s  .x.  f )
)  =  <. (
( 1st `  (
s  .x.  t )
)  o.  ( 1st `  ( s  .x.  f
) ) ) ,  ( ( 2nd `  (
s  .x.  t )
)  .+^  ( 2nd `  (
s  .x.  f )
) ) >. )
120110, 114, 1193eqtr4d 2666 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  ( T  X.  E
)  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  (
t  .+  f )
)  =  ( ( s  .x.  t ) 
.+  ( s  .x.  f ) ) )
121 simpl 473 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
122 simpr1 1067 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
s  e.  E )
123 simpr2 1068 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
t  e.  E )
124 simpr3 1069 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
f  e.  ( T  X.  E ) )
125124, 43syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  f
)  e.  T )
126 eqid 2622 . . . . . . . 8  |-  ( +g  `  ( ( EDRing `  K
) `  W )
)  =  ( +g  `  ( ( EDRing `  K
) `  W )
)
1271, 2, 3, 21, 126erngplus2 36092 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  ( 1st `  f )  e.  T
) )  ->  (
( s ( +g  `  ( ( EDRing `  K
) `  W )
) t ) `  ( 1st `  f ) )  =  ( ( s `  ( 1st `  f ) )  o.  ( t `  ( 1st `  f ) ) ) )
128121, 122, 123, 125, 127syl13anc 1328 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s ( +g  `  ( (
EDRing `  K ) `  W ) ) t ) `  ( 1st `  f ) )  =  ( ( s `  ( 1st `  f ) )  o.  ( t `
 ( 1st `  f
) ) ) )
12922fveq2d 6195 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  D
)  =  ( +g  `  ( ( EDRing `  K
) `  W )
) )
13017, 129syl5eq 2668 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
.+^  =  ( +g  `  ( ( EDRing `  K
) `  W )
) )
131130oveqd 6667 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( s  .+^  t )  =  ( s ( +g  `  ( (
EDRing `  K ) `  W ) ) t ) )
132131fveq1d 6193 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( s  .+^  t ) `  ( 1st `  f ) )  =  ( ( s ( +g  `  (
( EDRing `  K ) `  W ) ) t ) `  ( 1st `  f ) ) )
133132adantr 481 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t ) `  ( 1st `  f ) )  =  ( ( s ( +g  `  (
( EDRing `  K ) `  W ) ) t ) `  ( 1st `  f ) ) )
134663adantr2 1221 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  f
)  =  <. (
s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f ) )
>. )
135134fveq2d 6195 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
s  .x.  f )
)  =  ( 1st `  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
)
136135, 72syl6eq 2672 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
s  .x.  f )
)  =  ( s `
 ( 1st `  f
) ) )
1371, 2, 3, 4, 12dvhvsca 36390 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .x.  f
)  =  <. (
t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f ) )
>. )
1381373adantr1 1220 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .x.  f
)  =  <. (
t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f ) )
>. )
139138fveq2d 6195 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
t  .x.  f )
)  =  ( 1st `  <. ( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )
)
140 fvex 6201 . . . . . . . . 9  |-  ( t `
 ( 1st `  f
) )  e.  _V
141 vex 3203 . . . . . . . . . 10  |-  t  e. 
_V
142141, 70coex 7118 . . . . . . . . 9  |-  ( t  o.  ( 2nd `  f
) )  e.  _V
143140, 142op1st 7176 . . . . . . . 8  |-  ( 1st `  <. ( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )  =  ( t `  ( 1st `  f ) )
144139, 143syl6eq 2672 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 1st `  (
t  .x.  f )
)  =  ( t `
 ( 1st `  f
) ) )
145136, 144coeq12d 5286 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( 1st `  (
s  .x.  f )
)  o.  ( 1st `  ( t  .x.  f
) ) )  =  ( ( s `  ( 1st `  f ) )  o.  ( t `
 ( 1st `  f
) ) ) )
146128, 133, 1453eqtr4d 2666 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t ) `  ( 1st `  f ) )  =  ( ( 1st `  ( s  .x.  f
) )  o.  ( 1st `  ( t  .x.  f ) ) ) )
14730adantr 481 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  ->  D  e.  Ring )
14816adantr 481 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  ->  E  =  ( Base `  D ) )
149122, 148eleqtrd 2703 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
s  e.  ( Base `  D ) )
150123, 148eleqtrd 2703 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
t  e.  ( Base `  D ) )
151124, 82syl 17 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  f
)  e.  E )
152151, 148eleqtrd 2703 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  f
)  e.  ( Base `  D ) )
15314, 17, 19ringdir 18567 . . . . . . . 8  |-  ( ( D  e.  Ring  /\  (
s  e.  ( Base `  D )  /\  t  e.  ( Base `  D
)  /\  ( 2nd `  f )  e.  (
Base `  D )
) )  ->  (
( s  .+^  t ) 
.X.  ( 2nd `  f
) )  =  ( ( s  .X.  ( 2nd `  f ) ) 
.+^  ( t  .X.  ( 2nd `  f ) ) ) )
154147, 149, 150, 152, 153syl13anc 1328 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  .X.  ( 2nd `  f ) )  =  ( ( s 
.X.  ( 2nd `  f
) )  .+^  ( t 
.X.  ( 2nd `  f
) ) ) )
15514, 17ringacl 18578 . . . . . . . . . 10  |-  ( ( D  e.  Ring  /\  s  e.  ( Base `  D
)  /\  t  e.  ( Base `  D )
)  ->  ( s  .+^  t )  e.  (
Base `  D )
)
156147, 149, 150, 155syl3anc 1326 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .+^  t )  e.  ( Base `  D
) )
157156, 148eleqtrrd 2704 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .+^  t )  e.  E )
1581, 2, 3, 4, 10, 19dvhmulr 36375 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s 
.+^  t )  e.  E  /\  ( 2nd `  f )  e.  E
) )  ->  (
( s  .+^  t ) 
.X.  ( 2nd `  f
) )  =  ( ( s  .+^  t )  o.  ( 2nd `  f
) ) )
159121, 157, 151, 158syl12anc 1324 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  .X.  ( 2nd `  f ) )  =  ( ( s 
.+^  t )  o.  ( 2nd `  f
) ) )
160121, 122, 151, 94syl12anc 1324 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .X.  ( 2nd `  f ) )  =  ( s  o.  ( 2nd `  f
) ) )
1611, 2, 3, 4, 10, 19dvhmulr 36375 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  ( 2nd `  f )  e.  E
) )  ->  (
t  .X.  ( 2nd `  f ) )  =  ( t  o.  ( 2nd `  f ) ) )
162121, 123, 151, 161syl12anc 1324 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .X.  ( 2nd `  f ) )  =  ( t  o.  ( 2nd `  f
) ) )
163160, 162oveq12d 6668 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .X.  ( 2nd `  f ) )  .+^  ( t  .X.  ( 2nd `  f
) ) )  =  ( ( s  o.  ( 2nd `  f
) )  .+^  ( t  o.  ( 2nd `  f
) ) ) )
164154, 159, 1633eqtr3d 2664 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  o.  ( 2nd `  f ) )  =  ( ( s  o.  ( 2nd `  f
) )  .+^  ( t  o.  ( 2nd `  f
) ) ) )
165134fveq2d 6195 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
s  .x.  f )
)  =  ( 2nd `  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
)
166165, 106syl6eq 2672 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
s  .x.  f )
)  =  ( s  o.  ( 2nd `  f
) ) )
167138fveq2d 6195 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
t  .x.  f )
)  =  ( 2nd `  <. ( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )
)
168140, 142op2nd 7177 . . . . . . . 8  |-  ( 2nd `  <. ( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )  =  ( t  o.  ( 2nd `  f
) )
169167, 168syl6eq 2672 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( 2nd `  (
t  .x.  f )
)  =  ( t  o.  ( 2nd `  f
) ) )
170166, 169oveq12d 6668 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( 2nd `  (
s  .x.  f )
)  .+^  ( 2nd `  (
t  .x.  f )
) )  =  ( ( s  o.  ( 2nd `  f ) ) 
.+^  ( t  o.  ( 2nd `  f
) ) ) )
171164, 170eqtr4d 2659 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  o.  ( 2nd `  f ) )  =  ( ( 2nd `  ( s  .x.  f
) )  .+^  ( 2nd `  ( t  .x.  f
) ) ) )
172146, 171opeq12d 4410 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  ->  <. ( ( s  .+^  t ) `  ( 1st `  f ) ) ,  ( ( s 
.+^  t )  o.  ( 2nd `  f
) ) >.  =  <. ( ( 1st `  (
s  .x.  f )
)  o.  ( 1st `  ( t  .x.  f
) ) ) ,  ( ( 2nd `  (
s  .x.  f )
)  .+^  ( 2nd `  (
t  .x.  f )
) ) >. )
1731, 2, 3, 4, 12dvhvsca 36390 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s 
.+^  t )  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  <. (
( s  .+^  t ) `
 ( 1st `  f
) ) ,  ( ( s  .+^  t )  o.  ( 2nd `  f
) ) >. )
174121, 157, 124, 173syl12anc 1324 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  <. (
( s  .+^  t ) `
 ( 1st `  f
) ) ,  ( ( s  .+^  t )  o.  ( 2nd `  f
) ) >. )
1751163adantr2 1221 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  f
)  e.  ( T  X.  E ) )
1761, 2, 3, 4, 12dvhvscacl 36392 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .x.  f
)  e.  ( T  X.  E ) )
1771763adantr1 1220 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  .x.  f
)  e.  ( T  X.  E ) )
1781, 2, 3, 4, 10, 8, 17dvhvadd 36381 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s 
.x.  f )  e.  ( T  X.  E
)  /\  ( t  .x.  f )  e.  ( T  X.  E ) ) )  ->  (
( s  .x.  f
)  .+  ( t  .x.  f ) )  = 
<. ( ( 1st `  (
s  .x.  f )
)  o.  ( 1st `  ( t  .x.  f
) ) ) ,  ( ( 2nd `  (
s  .x.  f )
)  .+^  ( 2nd `  (
t  .x.  f )
) ) >. )
179121, 175, 177, 178syl12anc 1324 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .x.  f )  .+  (
t  .x.  f )
)  =  <. (
( 1st `  (
s  .x.  f )
)  o.  ( 1st `  ( t  .x.  f
) ) ) ,  ( ( 2nd `  (
s  .x.  f )
)  .+^  ( 2nd `  (
t  .x.  f )
) ) >. )
180172, 174, 1793eqtr4d 2666 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .+^  t )  .x.  f
)  =  ( ( s  .x.  f ) 
.+  ( t  .x.  f ) ) )
1811, 2, 3tendocoval 36054 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E )  /\  ( 1st `  f )  e.  T )  ->  (
( s  o.  t
) `  ( 1st `  f ) )  =  ( s `  (
t `  ( 1st `  f ) ) ) )
182121, 122, 123, 125, 181syl121anc 1331 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  o.  t ) `  ( 1st `  f ) )  =  ( s `  ( t `  ( 1st `  f ) ) ) )
183 coass 5654 . . . . . . 7  |-  ( ( s  o.  t )  o.  ( 2nd `  f
) )  =  ( s  o.  ( t  o.  ( 2nd `  f
) ) )
184183a1i 11 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  o.  t )  o.  ( 2nd `  f ) )  =  ( s  o.  ( t  o.  ( 2nd `  f ) ) ) )
185182, 184opeq12d 4410 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  ->  <. ( ( s  o.  t ) `  ( 1st `  f ) ) ,  ( ( s  o.  t )  o.  ( 2nd `  f
) ) >.  =  <. ( s `  ( t `
 ( 1st `  f
) ) ) ,  ( s  o.  (
t  o.  ( 2nd `  f ) ) )
>. )
1861, 3tendococl 36060 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  t  e.  E
)  ->  ( s  o.  t )  e.  E
)
187121, 122, 123, 186syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  o.  t
)  e.  E )
1881, 2, 3, 4, 12dvhvsca 36390 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s  o.  t )  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  o.  t )  .x.  f
)  =  <. (
( s  o.  t
) `  ( 1st `  f ) ) ,  ( ( s  o.  t )  o.  ( 2nd `  f ) )
>. )
189121, 187, 124, 188syl12anc 1324 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  o.  t )  .x.  f
)  =  <. (
( s  o.  t
) `  ( 1st `  f ) ) ,  ( ( s  o.  t )  o.  ( 2nd `  f ) )
>. )
1901, 2, 3tendocl 36055 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  ( 1st `  f
)  e.  T )  ->  ( t `  ( 1st `  f ) )  e.  T )
191121, 123, 125, 190syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t `  ( 1st `  f ) )  e.  T )
1921, 3tendococl 36060 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  ( 2nd `  f
)  e.  E )  ->  ( t  o.  ( 2nd `  f
) )  e.  E
)
193121, 123, 151, 192syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( t  o.  ( 2nd `  f ) )  e.  E )
1941, 2, 3, 4, 12dvhopvsca 36391 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  ( t `
 ( 1st `  f
) )  e.  T  /\  ( t  o.  ( 2nd `  f ) )  e.  E ) )  ->  ( s  .x.  <.
( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )  =  <. ( s `  ( t `  ( 1st `  f ) ) ) ,  ( s  o.  ( t  o.  ( 2nd `  f
) ) ) >.
)
195121, 122, 191, 193, 194syl13anc 1328 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  <. (
t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f ) )
>. )  =  <. ( s `  ( t `
 ( 1st `  f
) ) ) ,  ( s  o.  (
t  o.  ( 2nd `  f ) ) )
>. )
196185, 189, 1953eqtr4d 2666 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  o.  t )  .x.  f
)  =  ( s 
.x.  <. ( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )
)
1971, 2, 3, 4, 10, 19dvhmulr 36375 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E ) )  -> 
( s  .X.  t
)  =  ( s  o.  t ) )
1981973adantr3 1222 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .X.  t
)  =  ( s  o.  t ) )
199198oveq1d 6665 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .X.  t )  .x.  f
)  =  ( ( s  o.  t ) 
.x.  f ) )
200138oveq2d 6666 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( s  .x.  (
t  .x.  f )
)  =  ( s 
.x.  <. ( t `  ( 1st `  f ) ) ,  ( t  o.  ( 2nd `  f
) ) >. )
)
201196, 199, 2003eqtr4d 2666 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  t  e.  E  /\  f  e.  ( T  X.  E
) ) )  -> 
( ( s  .X.  t )  .x.  f
)  =  ( s 
.x.  ( t  .x.  f ) ) )
202 xp1st 7198 . . . . . . 7  |-  ( s  e.  ( T  X.  E )  ->  ( 1st `  s )  e.  T )
203202adantl 482 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( 1st `  s )  e.  T
)
204 tendospid 36306 . . . . . 6  |-  ( ( 1st `  s )  e.  T  ->  (
(  _I  |`  T ) `
 ( 1st `  s
) )  =  ( 1st `  s ) )
205203, 204syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( (  _I  |`  T ) `  ( 1st `  s ) )  =  ( 1st `  s ) )
206 xp2nd 7199 . . . . . . 7  |-  ( s  e.  ( T  X.  E )  ->  ( 2nd `  s )  e.  E )
2071, 2, 3tendof 36051 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( 2nd `  s
)  e.  E )  ->  ( 2nd `  s
) : T --> T )
208206, 207sylan2 491 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( 2nd `  s ) : T --> T )
209 fcoi2 6079 . . . . . 6  |-  ( ( 2nd `  s ) : T --> T  -> 
( (  _I  |`  T )  o.  ( 2nd `  s
) )  =  ( 2nd `  s ) )
210208, 209syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( (  _I  |`  T )  o.  ( 2nd `  s
) )  =  ( 2nd `  s ) )
211205, 210opeq12d 4410 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  <. ( (  _I  |`  T ) `  ( 1st `  s
) ) ,  ( (  _I  |`  T )  o.  ( 2nd `  s
) ) >.  =  <. ( 1st `  s ) ,  ( 2nd `  s
) >. )
2121, 2, 3tendoidcl 36057 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
213212anim1i 592 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( (  _I  |`  T )  e.  E  /\  s  e.  ( T  X.  E
) ) )
2141, 2, 3, 4, 12dvhvsca 36390 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  T )  e.  E  /\  s  e.  ( T  X.  E ) ) )  ->  ( (  _I  |`  T )  .x.  s )  =  <. ( (  _I  |`  T ) `
 ( 1st `  s
) ) ,  ( (  _I  |`  T )  o.  ( 2nd `  s
) ) >. )
215213, 214syldan 487 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( (  _I  |`  T )  .x.  s )  =  <. ( (  _I  |`  T ) `
 ( 1st `  s
) ) ,  ( (  _I  |`  T )  o.  ( 2nd `  s
) ) >. )
216 1st2nd2 7205 . . . . 5  |-  ( s  e.  ( T  X.  E )  ->  s  =  <. ( 1st `  s
) ,  ( 2nd `  s ) >. )
217216adantl 482 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  s  =  <. ( 1st `  s
) ,  ( 2nd `  s ) >. )
218211, 215, 2173eqtr4d 2666 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  ( T  X.  E ) )  ->  ( (  _I  |`  T )  .x.  s )  =  s )
2197, 9, 11, 13, 16, 18, 20, 26, 30, 34, 36, 120, 180, 201, 218islmodd 18869 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LMod )
22010islvec 19104 . 2  |-  ( U  e.  LVec  <->  ( U  e. 
LMod  /\  D  e.  DivRing ) )
221219, 28, 220sylanbrc 698 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LVec )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183    _I cid 5023    X. cxp 5112    |` cres 5116    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   invgcminusg 17423   1rcur 18501   Ringcrg 18547   DivRingcdr 18747   LModclmod 18863   LVecclvec 19102   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   EDRingcedring 36041   DVecHcdvh 36367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lvec 19103  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring 36045  df-dvech 36368
This theorem is referenced by:  dvhlvec  36398
  Copyright terms: Public domain W3C validator