| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvalveclem | Structured version Visualization version Unicode version | ||
| Description: Lemma for dvalvec 36315. (Contributed by NM, 11-Oct-2013.) (Proof shortened by Mario Carneiro, 22-Jun-2014.) |
| Ref | Expression |
|---|---|
| dvalvec.h |
|
| dvalvec.v |
|
| dvalveclem.t |
|
| dvalveclem.a |
|
| dvalveclem.e |
|
| dvalveclem.d |
|
| dvalveclem.b |
|
| dvalveclem.p |
|
| dvalveclem.m |
|
| dvalveclem.s |
|
| Ref | Expression |
|---|---|
| dvalveclem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvalvec.h |
. . . . 5
| |
| 2 | dvalveclem.t |
. . . . 5
| |
| 3 | dvalvec.v |
. . . . 5
| |
| 4 | eqid 2622 |
. . . . 5
| |
| 5 | 1, 2, 3, 4 | dvavbase 36301 |
. . . 4
|
| 6 | 5 | eqcomd 2628 |
. . 3
|
| 7 | dvalveclem.a |
. . . 4
| |
| 8 | 7 | a1i 11 |
. . 3
|
| 9 | dvalveclem.d |
. . . 4
| |
| 10 | 9 | a1i 11 |
. . 3
|
| 11 | dvalveclem.s |
. . . 4
| |
| 12 | 11 | a1i 11 |
. . 3
|
| 13 | dvalveclem.e |
. . . . 5
| |
| 14 | eqid 2622 |
. . . . 5
| |
| 15 | 1, 13, 3, 9, 14 | dvabase 36295 |
. . . 4
|
| 16 | 15 | eqcomd 2628 |
. . 3
|
| 17 | dvalveclem.p |
. . . 4
| |
| 18 | 17 | a1i 11 |
. . 3
|
| 19 | dvalveclem.m |
. . . 4
| |
| 20 | 19 | a1i 11 |
. . 3
|
| 21 | 1, 2, 13 | tendoidcl 36057 |
. . . . . . 7
|
| 22 | 21, 16 | eleqtrd 2703 |
. . . . . 6
|
| 23 | dvalveclem.b |
. . . . . . . 8
| |
| 24 | eqid 2622 |
. . . . . . . 8
| |
| 25 | 23, 1, 2, 13, 24 | tendo1ne0 36116 |
. . . . . . 7
|
| 26 | eqid 2622 |
. . . . . . . . . 10
| |
| 27 | 1, 26, 3, 9 | dvasca 36294 |
. . . . . . . . 9
|
| 28 | 27 | fveq2d 6195 |
. . . . . . . 8
|
| 29 | eqid 2622 |
. . . . . . . . 9
| |
| 30 | 23, 1, 2, 26, 24, 29 | erng0g 36282 |
. . . . . . . 8
|
| 31 | 28, 30 | eqtrd 2656 |
. . . . . . 7
|
| 32 | 25, 31 | neeqtrrd 2868 |
. . . . . 6
|
| 33 | 21, 21 | jca 554 |
. . . . . . . 8
|
| 34 | 1, 2, 13, 3, 9, 19 | dvamulr 36300 |
. . . . . . . 8
|
| 35 | 33, 34 | mpdan 702 |
. . . . . . 7
|
| 36 | f1oi 6174 |
. . . . . . . 8
| |
| 37 | f1of 6137 |
. . . . . . . 8
| |
| 38 | fcoi2 6079 |
. . . . . . . 8
| |
| 39 | 36, 37, 38 | mp2b 10 |
. . . . . . 7
|
| 40 | 35, 39 | syl6eq 2672 |
. . . . . 6
|
| 41 | 22, 32, 40 | 3jca 1242 |
. . . . 5
|
| 42 | 1, 26 | erngdv 36281 |
. . . . . . 7
|
| 43 | 27, 42 | eqeltrd 2701 |
. . . . . 6
|
| 44 | eqid 2622 |
. . . . . . 7
| |
| 45 | eqid 2622 |
. . . . . . 7
| |
| 46 | 14, 19, 44, 45 | drngid2 18763 |
. . . . . 6
|
| 47 | 43, 46 | syl 17 |
. . . . 5
|
| 48 | 41, 47 | mpbid 222 |
. . . 4
|
| 49 | 48 | eqcomd 2628 |
. . 3
|
| 50 | drngring 18754 |
. . . 4
| |
| 51 | 43, 50 | syl 17 |
. . 3
|
| 52 | 1, 3 | dvaabl 36313 |
. . . 4
|
| 53 | ablgrp 18198 |
. . . 4
| |
| 54 | 52, 53 | syl 17 |
. . 3
|
| 55 | 1, 2, 13, 3, 11 | dvavsca 36305 |
. . . . 5
|
| 56 | 55 | 3impb 1260 |
. . . 4
|
| 57 | 1, 2, 13 | tendocl 36055 |
. . . 4
|
| 58 | 56, 57 | eqeltrd 2701 |
. . 3
|
| 59 | 1, 2, 13 | tendospdi1 36309 |
. . . . 5
|
| 60 | simpr1 1067 |
. . . . . . 7
| |
| 61 | 1, 2 | ltrnco 36007 |
. . . . . . . 8
|
| 62 | 61 | 3adant3r1 1274 |
. . . . . . 7
|
| 63 | 60, 62 | jca 554 |
. . . . . 6
|
| 64 | 1, 2, 13, 3, 11 | dvavsca 36305 |
. . . . . 6
|
| 65 | 63, 64 | syldan 487 |
. . . . 5
|
| 66 | 57 | 3adant3r3 1276 |
. . . . . . 7
|
| 67 | 1, 2, 13 | tendocl 36055 |
. . . . . . . 8
|
| 68 | 67 | 3adant3r2 1275 |
. . . . . . 7
|
| 69 | 66, 68 | jca 554 |
. . . . . 6
|
| 70 | 1, 2, 3, 7 | dvavadd 36303 |
. . . . . 6
|
| 71 | 69, 70 | syldan 487 |
. . . . 5
|
| 72 | 59, 65, 71 | 3eqtr4d 2666 |
. . . 4
|
| 73 | 1, 2, 3, 7 | dvavadd 36303 |
. . . . . 6
|
| 74 | 73 | 3adantr1 1220 |
. . . . 5
|
| 75 | 74 | oveq2d 6666 |
. . . 4
|
| 76 | 55 | 3adantr3 1222 |
. . . . 5
|
| 77 | 1, 2, 13, 3, 11 | dvavsca 36305 |
. . . . . 6
|
| 78 | 77 | 3adantr2 1221 |
. . . . 5
|
| 79 | 76, 78 | oveq12d 6668 |
. . . 4
|
| 80 | 72, 75, 79 | 3eqtr4d 2666 |
. . 3
|
| 81 | 1, 2, 13, 3, 9, 17 | dvaplusgv 36298 |
. . . 4
|
| 82 | 1, 2, 13, 3, 9, 17 | dvafplusg 36296 |
. . . . . . . . . 10
|
| 83 | 82 | 3ad2ant1 1082 |
. . . . . . . . 9
|
| 84 | 83 | oveqd 6667 |
. . . . . . . 8
|
| 85 | eqid 2622 |
. . . . . . . . 9
| |
| 86 | 1, 2, 13, 85 | tendoplcl 36069 |
. . . . . . . 8
|
| 87 | 84, 86 | eqeltrd 2701 |
. . . . . . 7
|
| 88 | 87 | 3adant3r3 1276 |
. . . . . 6
|
| 89 | simpr3 1069 |
. . . . . 6
| |
| 90 | 88, 89 | jca 554 |
. . . . 5
|
| 91 | 1, 2, 13, 3, 11 | dvavsca 36305 |
. . . . 5
|
| 92 | 90, 91 | syldan 487 |
. . . 4
|
| 93 | 77 | 3adantr2 1221 |
. . . . . 6
|
| 94 | 1, 2, 13, 3, 11 | dvavsca 36305 |
. . . . . . 7
|
| 95 | 94 | 3adantr1 1220 |
. . . . . 6
|
| 96 | 93, 95 | oveq12d 6668 |
. . . . 5
|
| 97 | 67 | 3adant3r2 1275 |
. . . . . . 7
|
| 98 | 1, 2, 13 | tendospcl 36307 |
. . . . . . . 8
|
| 99 | 98 | 3adant3r1 1274 |
. . . . . . 7
|
| 100 | 97, 99 | jca 554 |
. . . . . 6
|
| 101 | 1, 2, 3, 7 | dvavadd 36303 |
. . . . . 6
|
| 102 | 100, 101 | syldan 487 |
. . . . 5
|
| 103 | 96, 102 | eqtrd 2656 |
. . . 4
|
| 104 | 81, 92, 103 | 3eqtr4d 2666 |
. . 3
|
| 105 | 1, 2, 13 | tendospass 36308 |
. . . . 5
|
| 106 | 1, 13 | tendococl 36060 |
. . . . . . . 8
|
| 107 | 106 | 3adant3r3 1276 |
. . . . . . 7
|
| 108 | 107, 89 | jca 554 |
. . . . . 6
|
| 109 | 1, 2, 13, 3, 11 | dvavsca 36305 |
. . . . . 6
|
| 110 | 108, 109 | syldan 487 |
. . . . 5
|
| 111 | simpr1 1067 |
. . . . . . 7
| |
| 112 | 111, 99 | jca 554 |
. . . . . 6
|
| 113 | 1, 2, 13, 3, 11 | dvavsca 36305 |
. . . . . 6
|
| 114 | 112, 113 | syldan 487 |
. . . . 5
|
| 115 | 105, 110, 114 | 3eqtr4d 2666 |
. . . 4
|
| 116 | 1, 2, 13, 3, 9, 19 | dvamulr 36300 |
. . . . . 6
|
| 117 | 116 | 3adantr3 1222 |
. . . . 5
|
| 118 | 117 | oveq1d 6665 |
. . . 4
|
| 119 | 95 | oveq2d 6666 |
. . . 4
|
| 120 | 115, 118, 119 | 3eqtr4d 2666 |
. . 3
|
| 121 | 21 | anim1i 592 |
. . . . 5
|
| 122 | 1, 2, 13, 3, 11 | dvavsca 36305 |
. . . . 5
|
| 123 | 121, 122 | syldan 487 |
. . . 4
|
| 124 | fvresi 6439 |
. . . . 5
| |
| 125 | 124 | adantl 482 |
. . . 4
|
| 126 | 123, 125 | eqtrd 2656 |
. . 3
|
| 127 | 6, 8, 10, 12, 16, 18, 20, 49, 51, 54, 58, 80, 104, 120, 126 | islmodd 18869 |
. 2
|
| 128 | 9 | islvec 19104 |
. 2
|
| 129 | 127, 43, 128 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-lmod 18865 df-lvec 19103 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tgrp 36031 df-tendo 36043 df-edring 36045 df-dveca 36291 |
| This theorem is referenced by: dvalvec 36315 |
| Copyright terms: Public domain | W3C validator |