MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.1 Structured version   Visualization version   Unicode version

Theorem tz9.1 8605
Description: Every set has a transitive closure (the smallest transitive extension). Theorem 9.1 of [TakeutiZaring] p. 73. See trcl 8604 for an explicit expression for the transitive closure. Apparently open problems are whether this theorem can be proved without the Axiom of Infinity; if not, then whether it implies Infinity; and if not, what is the "property" that Infinity has that the other axioms don't have that is weaker than Infinity itself?

(Added 22-Mar-2011) The following article seems to answer the first question, that it can't be proved without Infinity, in the affirmative: Mancini, Antonella and Zambella, Domenico (2001). "A note on recursive models of set theories." Notre Dame Journal of Formal Logic, 42(2):109-115. (Thanks to Scott Fenton.) (Contributed by NM, 15-Sep-2003.)

Hypothesis
Ref Expression
tz9.1.1  |-  A  e. 
_V
Assertion
Ref Expression
tz9.1  |-  E. x
( A  C_  x  /\  Tr  x  /\  A. y ( ( A 
C_  y  /\  Tr  y )  ->  x  C_  y ) )
Distinct variable group:    x, A, y

Proof of Theorem tz9.1
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.1.1 . . 3  |-  A  e. 
_V
2 eqid 2622 . . 3  |-  ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om )  =  ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om )
3 eqid 2622 . . 3  |-  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )
41, 2, 3trcl 8604 . 2  |-  ( A 
C_  U_ z  e.  om  ( ( rec (
( w  e.  _V  |->  ( w  u.  U. w
) ) ,  A
)  |`  om ) `  z )  /\  Tr  U_ z  e.  om  (
( rec ( ( w  e.  _V  |->  ( w  u.  U. w
) ) ,  A
)  |`  om ) `  z )  /\  A. y ( ( A 
C_  y  /\  Tr  y )  ->  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z ) 
C_  y ) )
5 omex 8540 . . . 4  |-  om  e.  _V
6 fvex 6201 . . . 4  |-  ( ( rec ( ( w  e.  _V  |->  ( w  u.  U. w ) ) ,  A )  |`  om ) `  z
)  e.  _V
75, 6iunex 7147 . . 3  |-  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  e.  _V
8 sseq2 3627 . . . 4  |-  ( x  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  ->  ( A  C_  x 
<->  A  C_  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z ) ) )
9 treq 4758 . . . 4  |-  ( x  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  ->  ( Tr  x  <->  Tr 
U_ z  e.  om  ( ( rec (
( w  e.  _V  |->  ( w  u.  U. w
) ) ,  A
)  |`  om ) `  z ) ) )
10 sseq1 3626 . . . . . 6  |-  ( x  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  ->  ( x  C_  y 
<-> 
U_ z  e.  om  ( ( rec (
( w  e.  _V  |->  ( w  u.  U. w
) ) ,  A
)  |`  om ) `  z )  C_  y
) )
1110imbi2d 330 . . . . 5  |-  ( x  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  ->  ( ( ( A  C_  y  /\  Tr  y )  ->  x  C_  y )  <->  ( ( A  C_  y  /\  Tr  y )  ->  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z ) 
C_  y ) ) )
1211albidv 1849 . . . 4  |-  ( x  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  ->  ( A. y
( ( A  C_  y  /\  Tr  y )  ->  x  C_  y
)  <->  A. y ( ( A  C_  y  /\  Tr  y )  ->  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z ) 
C_  y ) ) )
138, 9, 123anbi123d 1399 . . 3  |-  ( x  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  ->  ( ( A 
C_  x  /\  Tr  x  /\  A. y ( ( A  C_  y  /\  Tr  y )  ->  x  C_  y ) )  <-> 
( A  C_  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  /\  Tr  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  /\  A. y ( ( A  C_  y  /\  Tr  y )  ->  U_ z  e.  om  ( ( rec (
( w  e.  _V  |->  ( w  u.  U. w
) ) ,  A
)  |`  om ) `  z )  C_  y
) ) ) )
147, 13spcev 3300 . 2  |-  ( ( A  C_  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  /\  Tr  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  /\  A. y ( ( A  C_  y  /\  Tr  y )  ->  U_ z  e.  om  ( ( rec (
( w  e.  _V  |->  ( w  u.  U. w
) ) ,  A
)  |`  om ) `  z )  C_  y
) )  ->  E. x
( A  C_  x  /\  Tr  x  /\  A. y ( ( A 
C_  y  /\  Tr  y )  ->  x  C_  y ) ) )
154, 14ax-mp 5 1  |-  E. x
( A  C_  x  /\  Tr  x  /\  A. y ( ( A 
C_  y  /\  Tr  y )  ->  x  C_  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   U.cuni 4436   U_ciun 4520    |-> cmpt 4729   Tr wtr 4752    |` cres 5116   ` cfv 5888   omcom 7065   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  epfrs  8607
  Copyright terms: Public domain W3C validator