| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsfrnel2 | Structured version Visualization version Unicode version | ||
| Description: Elementhood in the target
space of the function |
| Ref | Expression |
|---|---|
| xpsfrnel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsfrnel 16223 |
. 2
| |
| 2 | 0ex 4790 |
. . . . . . . . . 10
| |
| 3 | 2 | prid1 4297 |
. . . . . . . . 9
|
| 4 | df2o3 7573 |
. . . . . . . . 9
| |
| 5 | 3, 4 | eleqtrri 2700 |
. . . . . . . 8
|
| 6 | fndm 5990 |
. . . . . . . 8
| |
| 7 | 5, 6 | syl5eleqr 2708 |
. . . . . . 7
|
| 8 | xpsc 16217 |
. . . . . . . . 9
| |
| 9 | 8 | dmeqi 5325 |
. . . . . . . 8
|
| 10 | dmun 5331 |
. . . . . . . 8
| |
| 11 | 9, 10 | eqtri 2644 |
. . . . . . 7
|
| 12 | 7, 11 | syl6eleq 2711 |
. . . . . 6
|
| 13 | elun 3753 |
. . . . . . 7
| |
| 14 | 2 | eldm 5321 |
. . . . . . . . 9
|
| 15 | brxp 5147 |
. . . . . . . . . . 11
| |
| 16 | elsni 4194 |
. . . . . . . . . . . . 13
| |
| 17 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 18 | 16, 17 | syl6eqelr 2710 |
. . . . . . . . . . . 12
|
| 19 | 18 | adantl 482 |
. . . . . . . . . . 11
|
| 20 | 15, 19 | sylbi 207 |
. . . . . . . . . 10
|
| 21 | 20 | exlimiv 1858 |
. . . . . . . . 9
|
| 22 | 14, 21 | sylbi 207 |
. . . . . . . 8
|
| 23 | dmxpss 5565 |
. . . . . . . . . 10
| |
| 24 | 23 | sseli 3599 |
. . . . . . . . 9
|
| 25 | elsni 4194 |
. . . . . . . . 9
| |
| 26 | 1n0 7575 |
. . . . . . . . . . . 12
| |
| 27 | 26 | neii 2796 |
. . . . . . . . . . 11
|
| 28 | 27 | pm2.21i 116 |
. . . . . . . . . 10
|
| 29 | 28 | eqcoms 2630 |
. . . . . . . . 9
|
| 30 | 24, 25, 29 | 3syl 18 |
. . . . . . . 8
|
| 31 | 22, 30 | jaoi 394 |
. . . . . . 7
|
| 32 | 13, 31 | sylbi 207 |
. . . . . 6
|
| 33 | 12, 32 | syl 17 |
. . . . 5
|
| 34 | 1on 7567 |
. . . . . . . . . . 11
| |
| 35 | 34 | elexi 3213 |
. . . . . . . . . 10
|
| 36 | 35 | prid2 4298 |
. . . . . . . . 9
|
| 37 | 36, 4 | eleqtrri 2700 |
. . . . . . . 8
|
| 38 | 37, 6 | syl5eleqr 2708 |
. . . . . . 7
|
| 39 | 38, 11 | syl6eleq 2711 |
. . . . . 6
|
| 40 | elun 3753 |
. . . . . . 7
| |
| 41 | dmxpss 5565 |
. . . . . . . . . 10
| |
| 42 | 41 | sseli 3599 |
. . . . . . . . 9
|
| 43 | elsni 4194 |
. . . . . . . . 9
| |
| 44 | 27 | pm2.21i 116 |
. . . . . . . . 9
|
| 45 | 42, 43, 44 | 3syl 18 |
. . . . . . . 8
|
| 46 | 35 | eldm 5321 |
. . . . . . . . 9
|
| 47 | brxp 5147 |
. . . . . . . . . . 11
| |
| 48 | elsni 4194 |
. . . . . . . . . . . . 13
| |
| 49 | 48, 17 | syl6eqelr 2710 |
. . . . . . . . . . . 12
|
| 50 | 49 | adantl 482 |
. . . . . . . . . . 11
|
| 51 | 47, 50 | sylbi 207 |
. . . . . . . . . 10
|
| 52 | 51 | exlimiv 1858 |
. . . . . . . . 9
|
| 53 | 46, 52 | sylbi 207 |
. . . . . . . 8
|
| 54 | 45, 53 | jaoi 394 |
. . . . . . 7
|
| 55 | 40, 54 | sylbi 207 |
. . . . . 6
|
| 56 | 39, 55 | syl 17 |
. . . . 5
|
| 57 | 33, 56 | jca 554 |
. . . 4
|
| 58 | 57 | 3ad2ant1 1082 |
. . 3
|
| 59 | elex 3212 |
. . . 4
| |
| 60 | elex 3212 |
. . . 4
| |
| 61 | 59, 60 | anim12i 590 |
. . 3
|
| 62 | 3anass 1042 |
. . . 4
| |
| 63 | xpscfn 16219 |
. . . . . 6
| |
| 64 | 63 | biantrurd 529 |
. . . . 5
|
| 65 | xpsc0 16220 |
. . . . . . 7
| |
| 66 | 65 | eleq1d 2686 |
. . . . . 6
|
| 67 | xpsc1 16221 |
. . . . . . 7
| |
| 68 | 67 | eleq1d 2686 |
. . . . . 6
|
| 69 | 66, 68 | bi2anan9 917 |
. . . . 5
|
| 70 | 64, 69 | bitr3d 270 |
. . . 4
|
| 71 | 62, 70 | syl5bb 272 |
. . 3
|
| 72 | 58, 61, 71 | pm5.21nii 368 |
. 2
|
| 73 | 1, 72 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-cda 8990 |
| This theorem is referenced by: xpscf 16226 xpsff1o 16228 |
| Copyright terms: Public domain | W3C validator |