| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsc0 | Structured version Visualization version Unicode version | ||
| Description: The pair function maps
|
| Ref | Expression |
|---|---|
| xpsc0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsc 16217 |
. . . 4
| |
| 2 | 1 | fveq1i 6192 |
. . 3
|
| 3 | fnconstg 6093 |
. . . 4
| |
| 4 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 5 | fvi 6255 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 7 | elsni 4194 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 9 | 6, 8 | syl5eqr 2670 |
. . . . . . . . . . 11
|
| 10 | velsn 4193 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | sylibr 224 |
. . . . . . . . . 10
|
| 12 | 11 | ssriv 3607 |
. . . . . . . . 9
|
| 13 | xpss2 5229 |
. . . . . . . . 9
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . 8
|
| 15 | 1on 7567 |
. . . . . . . . . 10
| |
| 16 | 15 | elexi 3213 |
. . . . . . . . 9
|
| 17 | fvex 6201 |
. . . . . . . . 9
| |
| 18 | 16, 17 | xpsn 6407 |
. . . . . . . 8
|
| 19 | 14, 18 | sseqtri 3637 |
. . . . . . 7
|
| 20 | 16, 17 | funsn 5939 |
. . . . . . 7
|
| 21 | funss 5907 |
. . . . . . 7
| |
| 22 | 19, 20, 21 | mp2 9 |
. . . . . 6
|
| 23 | funfn 5918 |
. . . . . 6
| |
| 24 | 22, 23 | mpbi 220 |
. . . . 5
|
| 25 | 24 | a1i 11 |
. . . 4
|
| 26 | dmxpss 5565 |
. . . . . . 7
| |
| 27 | sslin 3839 |
. . . . . . 7
| |
| 28 | 26, 27 | ax-mp 5 |
. . . . . 6
|
| 29 | 1n0 7575 |
. . . . . . . 8
| |
| 30 | 29 | necomi 2848 |
. . . . . . 7
|
| 31 | disjsn2 4247 |
. . . . . . 7
| |
| 32 | 30, 31 | ax-mp 5 |
. . . . . 6
|
| 33 | sseq0 3975 |
. . . . . 6
| |
| 34 | 28, 32, 33 | mp2an 708 |
. . . . 5
|
| 35 | 34 | a1i 11 |
. . . 4
|
| 36 | 0ex 4790 |
. . . . . 6
| |
| 37 | 36 | snid 4208 |
. . . . 5
|
| 38 | 37 | a1i 11 |
. . . 4
|
| 39 | fvun1 6269 |
. . . 4
| |
| 40 | 3, 25, 35, 38, 39 | syl112anc 1330 |
. . 3
|
| 41 | 2, 40 | syl5eq 2668 |
. 2
|
| 42 | xpsng 6406 |
. . . . 5
| |
| 43 | 42 | fveq1d 6193 |
. . . 4
|
| 44 | fvsng 6447 |
. . . 4
| |
| 45 | 43, 44 | eqtrd 2656 |
. . 3
|
| 46 | 36, 45 | mpan 706 |
. 2
|
| 47 | 41, 46 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1o 7560 df-cda 8990 |
| This theorem is referenced by: xpscfv 16222 xpsfeq 16224 xpsfrnel2 16225 xpsff1o 16228 xpsle 16241 dmdprdpr 18448 dprdpr 18449 xpstopnlem1 21612 xpstopnlem2 21614 xpsxmetlem 22184 xpsdsval 22186 xpsmet 22187 |
| Copyright terms: Public domain | W3C validator |