MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsc1 Structured version   Visualization version   Unicode version

Theorem xpsc1 16221
Description: The pair function maps  1 to  B. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
xpsc1  |-  ( B  e.  V  ->  ( `' ( { A }  +c  { B }
) `  1o )  =  B )

Proof of Theorem xpsc1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xpsc 16217 . . . 4  |-  `' ( { A }  +c  { B } )  =  ( ( { (/) }  X.  { A }
)  u.  ( { 1o }  X.  { B } ) )
21fveq1i 6192 . . 3  |-  ( `' ( { A }  +c  { B } ) `
 1o )  =  ( ( ( {
(/) }  X.  { A } )  u.  ( { 1o }  X.  { B } ) ) `  1o )
3 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
4 fvi 6255 . . . . . . . . . . . . 13  |-  ( x  e.  _V  ->  (  _I  `  x )  =  x )
53, 4ax-mp 5 . . . . . . . . . . . 12  |-  (  _I 
`  x )  =  x
6 elsni 4194 . . . . . . . . . . . . 13  |-  ( x  e.  { A }  ->  x  =  A )
76fveq2d 6195 . . . . . . . . . . . 12  |-  ( x  e.  { A }  ->  (  _I  `  x
)  =  (  _I 
`  A ) )
85, 7syl5eqr 2670 . . . . . . . . . . 11  |-  ( x  e.  { A }  ->  x  =  (  _I 
`  A ) )
9 velsn 4193 . . . . . . . . . . 11  |-  ( x  e.  { (  _I 
`  A ) }  <-> 
x  =  (  _I 
`  A ) )
108, 9sylibr 224 . . . . . . . . . 10  |-  ( x  e.  { A }  ->  x  e.  { (  _I  `  A ) } )
1110ssriv 3607 . . . . . . . . 9  |-  { A }  C_  { (  _I 
`  A ) }
12 xpss2 5229 . . . . . . . . 9  |-  ( { A }  C_  { (  _I  `  A ) }  ->  ( { (/)
}  X.  { A } )  C_  ( { (/) }  X.  {
(  _I  `  A
) } ) )
1311, 12ax-mp 5 . . . . . . . 8  |-  ( {
(/) }  X.  { A } )  C_  ( { (/) }  X.  {
(  _I  `  A
) } )
14 0ex 4790 . . . . . . . . 9  |-  (/)  e.  _V
15 fvex 6201 . . . . . . . . 9  |-  (  _I 
`  A )  e. 
_V
1614, 15xpsn 6407 . . . . . . . 8  |-  ( {
(/) }  X.  { (  _I  `  A ) } )  =  { <.
(/) ,  (  _I  `  A ) >. }
1713, 16sseqtri 3637 . . . . . . 7  |-  ( {
(/) }  X.  { A } )  C_  { <. (/)
,  (  _I  `  A ) >. }
1814, 15funsn 5939 . . . . . . 7  |-  Fun  { <.
(/) ,  (  _I  `  A ) >. }
19 funss 5907 . . . . . . 7  |-  ( ( { (/) }  X.  { A } )  C_  { <. (/)
,  (  _I  `  A ) >. }  ->  ( Fun  { <. (/) ,  (  _I  `  A )
>. }  ->  Fun  ( {
(/) }  X.  { A } ) ) )
2017, 18, 19mp2 9 . . . . . 6  |-  Fun  ( { (/) }  X.  { A } )
21 funfn 5918 . . . . . 6  |-  ( Fun  ( { (/) }  X.  { A } )  <->  ( { (/)
}  X.  { A } )  Fn  dom  ( { (/) }  X.  { A } ) )
2220, 21mpbi 220 . . . . 5  |-  ( {
(/) }  X.  { A } )  Fn  dom  ( { (/) }  X.  { A } )
2322a1i 11 . . . 4  |-  ( B  e.  V  ->  ( { (/) }  X.  { A } )  Fn  dom  ( { (/) }  X.  { A } ) )
24 fnconstg 6093 . . . 4  |-  ( B  e.  V  ->  ( { 1o }  X.  { B } )  Fn  { 1o } )
25 dmxpss 5565 . . . . . . 7  |-  dom  ( { (/) }  X.  { A } )  C_  { (/) }
26 ssrin 3838 . . . . . . 7  |-  ( dom  ( { (/) }  X.  { A } )  C_  {
(/) }  ->  ( dom  ( { (/) }  X.  { A } )  i^i 
{ 1o } ) 
C_  ( { (/) }  i^i  { 1o }
) )
2725, 26ax-mp 5 . . . . . 6  |-  ( dom  ( { (/) }  X.  { A } )  i^i 
{ 1o } ) 
C_  ( { (/) }  i^i  { 1o }
)
28 1n0 7575 . . . . . . . 8  |-  1o  =/=  (/)
2928necomi 2848 . . . . . . 7  |-  (/)  =/=  1o
30 disjsn2 4247 . . . . . . 7  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
3129, 30ax-mp 5 . . . . . 6  |-  ( {
(/) }  i^i  { 1o } )  =  (/)
32 sseq0 3975 . . . . . 6  |-  ( ( ( dom  ( {
(/) }  X.  { A } )  i^i  { 1o } )  C_  ( { (/) }  i^i  { 1o } )  /\  ( { (/) }  i^i  { 1o } )  =  (/) )  ->  ( dom  ( { (/) }  X.  { A } )  i^i  { 1o } )  =  (/) )
3327, 31, 32mp2an 708 . . . . 5  |-  ( dom  ( { (/) }  X.  { A } )  i^i 
{ 1o } )  =  (/)
3433a1i 11 . . . 4  |-  ( B  e.  V  ->  ( dom  ( { (/) }  X.  { A } )  i^i 
{ 1o } )  =  (/) )
35 1on 7567 . . . . . . 7  |-  1o  e.  On
3635elexi 3213 . . . . . 6  |-  1o  e.  _V
3736snid 4208 . . . . 5  |-  1o  e.  { 1o }
3837a1i 11 . . . 4  |-  ( B  e.  V  ->  1o  e.  { 1o } )
39 fvun2 6270 . . . 4  |-  ( ( ( { (/) }  X.  { A } )  Fn 
dom  ( { (/) }  X.  { A }
)  /\  ( { 1o }  X.  { B } )  Fn  { 1o }  /\  ( ( dom  ( { (/) }  X.  { A }
)  i^i  { 1o } )  =  (/)  /\  1o  e.  { 1o } ) )  -> 
( ( ( {
(/) }  X.  { A } )  u.  ( { 1o }  X.  { B } ) ) `  1o )  =  (
( { 1o }  X.  { B } ) `
 1o ) )
4023, 24, 34, 38, 39syl112anc 1330 . . 3  |-  ( B  e.  V  ->  (
( ( { (/) }  X.  { A }
)  u.  ( { 1o }  X.  { B } ) ) `  1o )  =  (
( { 1o }  X.  { B } ) `
 1o ) )
412, 40syl5eq 2668 . 2  |-  ( B  e.  V  ->  ( `' ( { A }  +c  { B }
) `  1o )  =  ( ( { 1o }  X.  { B } ) `  1o ) )
42 xpsng 6406 . . . . 5  |-  ( ( 1o  e.  On  /\  B  e.  V )  ->  ( { 1o }  X.  { B } )  =  { <. 1o ,  B >. } )
4342fveq1d 6193 . . . 4  |-  ( ( 1o  e.  On  /\  B  e.  V )  ->  ( ( { 1o }  X.  { B }
) `  1o )  =  ( { <. 1o ,  B >. } `  1o ) )
44 fvsng 6447 . . . 4  |-  ( ( 1o  e.  On  /\  B  e.  V )  ->  ( { <. 1o ,  B >. } `  1o )  =  B )
4543, 44eqtrd 2656 . . 3  |-  ( ( 1o  e.  On  /\  B  e.  V )  ->  ( ( { 1o }  X.  { B }
) `  1o )  =  B )
4635, 45mpan 706 . 2  |-  ( B  e.  V  ->  (
( { 1o }  X.  { B } ) `
 1o )  =  B )
4741, 46eqtrd 2656 1  |-  ( B  e.  V  ->  ( `' ( { A }  +c  { B }
) `  1o )  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183    _I cid 5023    X. cxp 5112   `'ccnv 5113   dom cdm 5114   Oncon0 5723   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   1oc1o 7553    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-cda 8990
This theorem is referenced by:  xpscfv  16222  xpsfeq  16224  xpsfrnel2  16225  xpsff1o  16228  xpsle  16241  dmdprdpr  18448  dprdpr  18449  xpstopnlem1  21612  xpstopnlem2  21614  xpsxmetlem  22184  xpsdsval  22186  xpsmet  22187
  Copyright terms: Public domain W3C validator