![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ewlk | Structured version Visualization version GIF version |
Description: The empty set (empty sequence of edges) is an s-walk of edges for all s. (Contributed by AV, 4-Jan-2021.) |
Ref | Expression |
---|---|
0ewlk | ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ∅ ∈ (𝐺 EdgWalks 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrd0 13330 | . . 3 ⊢ ∅ ∈ Word dom (iEdg‘𝐺) | |
2 | ral0 4076 | . . . 4 ⊢ ∀𝑘 ∈ ∅ 𝑆 ≤ (#‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘)))) | |
3 | hash0 13158 | . . . . . . 7 ⊢ (#‘∅) = 0 | |
4 | 3 | oveq2i 6661 | . . . . . 6 ⊢ (1..^(#‘∅)) = (1..^0) |
5 | 0le1 10551 | . . . . . . 7 ⊢ 0 ≤ 1 | |
6 | 1z 11407 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
7 | 0z 11388 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
8 | 6, 7 | pm3.2i 471 | . . . . . . . 8 ⊢ (1 ∈ ℤ ∧ 0 ∈ ℤ) |
9 | fzon 12489 | . . . . . . . 8 ⊢ ((1 ∈ ℤ ∧ 0 ∈ ℤ) → (0 ≤ 1 ↔ (1..^0) = ∅)) | |
10 | 8, 9 | ax-mp 5 | . . . . . . 7 ⊢ (0 ≤ 1 ↔ (1..^0) = ∅) |
11 | 5, 10 | mpbi 220 | . . . . . 6 ⊢ (1..^0) = ∅ |
12 | 4, 11 | eqtri 2644 | . . . . 5 ⊢ (1..^(#‘∅)) = ∅ |
13 | 12 | raleqi 3142 | . . . 4 ⊢ (∀𝑘 ∈ (1..^(#‘∅))𝑆 ≤ (#‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘)))) ↔ ∀𝑘 ∈ ∅ 𝑆 ≤ (#‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘))))) |
14 | 2, 13 | mpbir 221 | . . 3 ⊢ ∀𝑘 ∈ (1..^(#‘∅))𝑆 ≤ (#‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘)))) |
15 | 1, 14 | pm3.2i 471 | . 2 ⊢ (∅ ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(#‘∅))𝑆 ≤ (#‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘))))) |
16 | 0ex 4790 | . . 3 ⊢ ∅ ∈ V | |
17 | eqid 2622 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
18 | 17 | isewlk 26498 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ∧ ∅ ∈ V) → (∅ ∈ (𝐺 EdgWalks 𝑆) ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(#‘∅))𝑆 ≤ (#‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘))))))) |
19 | 16, 18 | mp3an3 1413 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (∅ ∈ (𝐺 EdgWalks 𝑆) ↔ (∅ ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(#‘∅))𝑆 ≤ (#‘(((iEdg‘𝐺)‘(∅‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(∅‘𝑘))))))) |
20 | 15, 19 | mpbiri 248 | 1 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → ∅ ∈ (𝐺 EdgWalks 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ∩ cin 3573 ∅c0 3915 class class class wbr 4653 dom cdm 5114 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 ≤ cle 10075 − cmin 10266 ℕ0*cxnn0 11363 ℤcz 11377 ..^cfzo 12465 #chash 13117 Word cword 13291 iEdgciedg 25875 EdgWalks cewlks 26491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-ewlks 26494 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |