| Step | Hyp | Ref
| Expression |
| 1 | | crngring 18558 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 2 | 1 | adantr 481 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 3 | | simpr 477 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ 𝐼) |
| 4 | | quscrng.i |
. . . . . 6
⊢ 𝐼 = (LIdeal‘𝑅) |
| 5 | 4 | crng2idl 19239 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅)) |
| 6 | 5 | adantr 481 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝐼 = (2Ideal‘𝑅)) |
| 7 | 3, 6 | eleqtrd 2703 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (2Ideal‘𝑅)) |
| 8 | | quscrng.u |
. . . 4
⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
| 9 | | eqid 2622 |
. . . 4
⊢
(2Ideal‘𝑅) =
(2Ideal‘𝑅) |
| 10 | 8, 9 | qusring 19236 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → 𝑈 ∈ Ring) |
| 11 | 2, 7, 10 | syl2anc 693 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ Ring) |
| 12 | 8 | a1i 11 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
| 13 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → (Base‘𝑅) = (Base‘𝑅)) |
| 14 | | ovexd 6680 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) ∈ V) |
| 15 | 12, 13, 14, 2 | qusbas 16205 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → ((Base‘𝑅) / (𝑅 ~QG 𝑆)) = (Base‘𝑈)) |
| 16 | 15 | eleq2d 2687 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → (𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑥 ∈ (Base‘𝑈))) |
| 17 | 15 | eleq2d 2687 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → (𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑦 ∈ (Base‘𝑈))) |
| 18 | 16, 17 | anbi12d 747 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ↔ (𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)))) |
| 19 | | eqid 2622 |
. . . . . 6
⊢
((Base‘𝑅)
/ (𝑅
~QG 𝑆)) =
((Base‘𝑅) /
(𝑅 ~QG
𝑆)) |
| 20 | | oveq2 6658 |
. . . . . . 7
⊢ ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → (𝑥(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r‘𝑈)𝑦)) |
| 21 | | oveq1 6657 |
. . . . . . 7
⊢ ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)𝑥) = (𝑦(.r‘𝑈)𝑥)) |
| 22 | 20, 21 | eqeq12d 2637 |
. . . . . 6
⊢ ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ((𝑥(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)𝑥) ↔ (𝑥(.r‘𝑈)𝑦) = (𝑦(.r‘𝑈)𝑥))) |
| 23 | | oveq1 6657 |
. . . . . . . . 9
⊢ ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑣](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆))) |
| 24 | | oveq2 6658 |
. . . . . . . . 9
⊢ ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑣](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)𝑥)) |
| 25 | 23, 24 | eqeq12d 2637 |
. . . . . . . 8
⊢ ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → (([𝑣](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑣](𝑅 ~QG 𝑆)) ↔ (𝑥(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)𝑥))) |
| 26 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 27 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 28 | 26, 27 | crngcom 18562 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r‘𝑅)𝑣) = (𝑣(.r‘𝑅)𝑢)) |
| 29 | 28 | 3adant1r 1319 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r‘𝑅)𝑣) = (𝑣(.r‘𝑅)𝑢)) |
| 30 | 29 | 3expa 1265 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r‘𝑅)𝑣) = (𝑣(.r‘𝑅)𝑢)) |
| 31 | 30 | eceq1d 7783 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → [(𝑢(.r‘𝑅)𝑣)](𝑅 ~QG 𝑆) = [(𝑣(.r‘𝑅)𝑢)](𝑅 ~QG 𝑆)) |
| 32 | 4 | lidlsubg 19215 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 33 | 1, 32 | sylan 488 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 34 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) |
| 35 | 26, 34 | eqger 17644 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
| 36 | 33, 35 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
| 37 | 26, 34, 9, 27 | 2idlcpbl 19234 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
| 38 | 2, 7, 37 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
| 39 | 26, 27 | ringcl 18561 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅)) → (𝑐(.r‘𝑅)𝑑) ∈ (Base‘𝑅)) |
| 40 | 39 | 3expb 1266 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (𝑐(.r‘𝑅)𝑑) ∈ (Base‘𝑅)) |
| 41 | 2, 40 | sylan 488 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (𝑐(.r‘𝑅)𝑑) ∈ (Base‘𝑅)) |
| 42 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(.r‘𝑈) = (.r‘𝑈) |
| 43 | 12, 13, 36, 2, 38, 41, 27, 42 | qusmulval 16215 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r‘𝑅)𝑣)](𝑅 ~QG 𝑆)) |
| 44 | 43 | 3expa 1265 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r‘𝑅)𝑣)](𝑅 ~QG 𝑆)) |
| 45 | 12, 13, 36, 2, 38, 41, 27, 42 | qusmulval 16215 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑢 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r‘𝑅)𝑢)](𝑅 ~QG 𝑆)) |
| 46 | 45 | 3expa 1265 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑣 ∈ (Base‘𝑅)) ∧ 𝑢 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r‘𝑅)𝑢)](𝑅 ~QG 𝑆)) |
| 47 | 46 | an32s 846 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r‘𝑅)𝑢)](𝑅 ~QG 𝑆)) |
| 48 | 31, 44, 47 | 3eqtr4rd 2667 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑣](𝑅 ~QG 𝑆))) |
| 49 | 19, 25, 48 | ectocld 7814 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)𝑥)) |
| 50 | 49 | an32s 846 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)𝑥)) |
| 51 | 19, 22, 50 | ectocld 7814 |
. . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r‘𝑈)𝑦) = (𝑦(.r‘𝑈)𝑥)) |
| 52 | 51 | expl 648 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r‘𝑈)𝑦) = (𝑦(.r‘𝑈)𝑥))) |
| 53 | 18, 52 | sylbird 250 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) → (𝑥(.r‘𝑈)𝑦) = (𝑦(.r‘𝑈)𝑥))) |
| 54 | 53 | ralrimivv 2970 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r‘𝑈)𝑦) = (𝑦(.r‘𝑈)𝑥)) |
| 55 | | eqid 2622 |
. . 3
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 56 | 55, 42 | iscrng2 18563 |
. 2
⊢ (𝑈 ∈ CRing ↔ (𝑈 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r‘𝑈)𝑦) = (𝑦(.r‘𝑈)𝑥))) |
| 57 | 11, 54, 56 | sylanbrc 698 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ CRing) |