| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bezoutlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for bezout 15260. (Contributed by Mario Carneiro, 15-Mar-2014.) |
| Ref | Expression |
|---|---|
| bezout.1 |
|
| bezout.3 |
|
| bezout.4 |
|
| Ref | Expression |
|---|---|
| bezoutlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezout.3 |
. . . 4
| |
| 2 | fveq2 6191 |
. . . . . . 7
| |
| 3 | oveq1 6657 |
. . . . . . 7
| |
| 4 | 2, 3 | eqeq12d 2637 |
. . . . . 6
|
| 5 | 4 | rexbidv 3052 |
. . . . 5
|
| 6 | zre 11381 |
. . . . . 6
| |
| 7 | 1z 11407 |
. . . . . . . . 9
| |
| 8 | ax-1rid 10006 |
. . . . . . . . . 10
| |
| 9 | 8 | eqcomd 2628 |
. . . . . . . . 9
|
| 10 | oveq2 6658 |
. . . . . . . . . . 11
| |
| 11 | 10 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 12 | 11 | rspcev 3309 |
. . . . . . . . 9
|
| 13 | 7, 9, 12 | sylancr 695 |
. . . . . . . 8
|
| 14 | eqeq1 2626 |
. . . . . . . . 9
| |
| 15 | 14 | rexbidv 3052 |
. . . . . . . 8
|
| 16 | 13, 15 | syl5ibrcom 237 |
. . . . . . 7
|
| 17 | neg1z 11413 |
. . . . . . . . 9
| |
| 18 | recn 10026 |
. . . . . . . . . . 11
| |
| 19 | 18 | mulm1d 10482 |
. . . . . . . . . 10
|
| 20 | neg1cn 11124 |
. . . . . . . . . . 11
| |
| 21 | mulcom 10022 |
. . . . . . . . . . 11
| |
| 22 | 20, 18, 21 | sylancr 695 |
. . . . . . . . . 10
|
| 23 | 19, 22 | eqtr3d 2658 |
. . . . . . . . 9
|
| 24 | oveq2 6658 |
. . . . . . . . . . 11
| |
| 25 | 24 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 26 | 25 | rspcev 3309 |
. . . . . . . . 9
|
| 27 | 17, 23, 26 | sylancr 695 |
. . . . . . . 8
|
| 28 | eqeq1 2626 |
. . . . . . . . 9
| |
| 29 | 28 | rexbidv 3052 |
. . . . . . . 8
|
| 30 | 27, 29 | syl5ibrcom 237 |
. . . . . . 7
|
| 31 | absor 14040 |
. . . . . . 7
| |
| 32 | 16, 30, 31 | mpjaod 396 |
. . . . . 6
|
| 33 | 6, 32 | syl 17 |
. . . . 5
|
| 34 | 5, 33 | vtoclga 3272 |
. . . 4
|
| 35 | 1, 34 | syl 17 |
. . 3
|
| 36 | bezout.4 |
. . . . . . . . . . 11
| |
| 37 | 36 | zcnd 11483 |
. . . . . . . . . 10
|
| 38 | 37 | adantr 481 |
. . . . . . . . 9
|
| 39 | 38 | mul01d 10235 |
. . . . . . . 8
|
| 40 | 39 | oveq2d 6666 |
. . . . . . 7
|
| 41 | 1 | zcnd 11483 |
. . . . . . . . 9
|
| 42 | zcn 11382 |
. . . . . . . . 9
| |
| 43 | mulcl 10020 |
. . . . . . . . 9
| |
| 44 | 41, 42, 43 | syl2an 494 |
. . . . . . . 8
|
| 45 | 44 | addid1d 10236 |
. . . . . . 7
|
| 46 | 40, 45 | eqtrd 2656 |
. . . . . 6
|
| 47 | 46 | eqeq2d 2632 |
. . . . 5
|
| 48 | 0z 11388 |
. . . . . 6
| |
| 49 | oveq2 6658 |
. . . . . . . . 9
| |
| 50 | 49 | oveq2d 6666 |
. . . . . . . 8
|
| 51 | 50 | eqeq2d 2632 |
. . . . . . 7
|
| 52 | 51 | rspcev 3309 |
. . . . . 6
|
| 53 | 48, 52 | mpan 706 |
. . . . 5
|
| 54 | 47, 53 | syl6bir 244 |
. . . 4
|
| 55 | 54 | reximdva 3017 |
. . 3
|
| 56 | 35, 55 | mpd 15 |
. 2
|
| 57 | nnabscl 14065 |
. . . 4
| |
| 58 | 57 | ex 450 |
. . 3
|
| 59 | 1, 58 | syl 17 |
. 2
|
| 60 | eqeq1 2626 |
. . . . 5
| |
| 61 | 60 | 2rexbidv 3057 |
. . . 4
|
| 62 | bezout.1 |
. . . 4
| |
| 63 | 61, 62 | elrab2 3366 |
. . 3
|
| 64 | 63 | simplbi2com 657 |
. 2
|
| 65 | 56, 59, 64 | sylsyld 61 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 |
| This theorem is referenced by: bezoutlem2 15257 bezoutlem4 15259 |
| Copyright terms: Public domain | W3C validator |