| Step | Hyp | Ref
| Expression |
| 1 | | bezout.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 2 | | bezout.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 3 | | gcddvds 15225 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
| 4 | 1, 2, 3 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
| 5 | 4 | simpld 475 |
. . . . . 6
⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴) |
| 6 | 1, 2 | gcdcld 15230 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 gcd 𝐵) ∈
ℕ0) |
| 7 | 6 | nn0zd 11480 |
. . . . . . 7
⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ) |
| 8 | | divides 14985 |
. . . . . . 7
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴)) |
| 9 | 7, 1, 8 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴)) |
| 10 | 5, 9 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴) |
| 11 | 4 | simprd 479 |
. . . . . 6
⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵) |
| 12 | | divides 14985 |
. . . . . . 7
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵)) |
| 13 | 7, 2, 12 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵)) |
| 14 | 11, 13 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) |
| 15 | | reeanv 3107 |
. . . . . 6
⊢
(∃𝑠 ∈
ℤ ∃𝑡 ∈
ℤ ((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) ↔ (∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵)) |
| 16 | | bezout.1 |
. . . . . . . . . . 11
⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} |
| 17 | | bezout.2 |
. . . . . . . . . . 11
⊢ 𝐺 = inf(𝑀, ℝ, < ) |
| 18 | | bezout.5 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
| 19 | 16, 1, 2, 17, 18 | bezoutlem2 15257 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ 𝑀) |
| 20 | | oveq2 6658 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢)) |
| 21 | 20 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑢 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑦))) |
| 22 | 21 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)))) |
| 23 | | oveq2 6658 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑣 → (𝐵 · 𝑦) = (𝐵 · 𝑣)) |
| 24 | 23 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
| 25 | 24 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑣 → (𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
| 26 | 22, 25 | cbvrex2v 3180 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
| 27 | | eqeq1 2626 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝐺 → (𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
| 28 | 27 | 2rexbidv 3057 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐺 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
| 29 | 26, 28 | syl5bb 272 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐺 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
| 30 | 29, 16 | elrab2 3366 |
. . . . . . . . . 10
⊢ (𝐺 ∈ 𝑀 ↔ (𝐺 ∈ ℕ ∧ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
| 31 | 19, 30 | sylib 208 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 ∈ ℕ ∧ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
| 32 | 31 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
| 33 | | simprrl 804 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑠 ∈ ℤ) |
| 34 | | simprll 802 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑢 ∈ ℤ) |
| 35 | 33, 34 | zmulcld 11488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑠 · 𝑢) ∈ ℤ) |
| 36 | | simprrr 805 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑡 ∈ ℤ) |
| 37 | | simprlr 803 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑣 ∈ ℤ) |
| 38 | 36, 37 | zmulcld 11488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑡 · 𝑣) ∈ ℤ) |
| 39 | 35, 38 | zaddcld 11486 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → ((𝑠 · 𝑢) + (𝑡 · 𝑣)) ∈ ℤ) |
| 40 | 7 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∈ ℤ) |
| 41 | | dvdsmul2 15004 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑠 · 𝑢) + (𝑡 · 𝑣)) ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ) → (𝐴 gcd 𝐵) ∥ (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵))) |
| 42 | 39, 40, 41 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∥ (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵))) |
| 43 | 35 | zcnd 11483 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑠 · 𝑢) ∈ ℂ) |
| 44 | 38 | zcnd 11483 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑡 · 𝑣) ∈ ℂ) |
| 45 | 40 | zcnd 11483 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∈ ℂ) |
| 46 | 43, 44, 45 | adddird 10065 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵)) = (((𝑠 · 𝑢) · (𝐴 gcd 𝐵)) + ((𝑡 · 𝑣) · (𝐴 gcd 𝐵)))) |
| 47 | 33 | zcnd 11483 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑠 ∈ ℂ) |
| 48 | 34 | zcnd 11483 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑢 ∈ ℂ) |
| 49 | 47, 48, 45 | mul32d 10246 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → ((𝑠 · 𝑢) · (𝐴 gcd 𝐵)) = ((𝑠 · (𝐴 gcd 𝐵)) · 𝑢)) |
| 50 | 36 | zcnd 11483 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑡 ∈ ℂ) |
| 51 | 37 | zcnd 11483 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑣 ∈ ℂ) |
| 52 | 50, 51, 45 | mul32d 10246 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → ((𝑡 · 𝑣) · (𝐴 gcd 𝐵)) = ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)) |
| 53 | 49, 52 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · 𝑢) · (𝐴 gcd 𝐵)) + ((𝑡 · 𝑣) · (𝐴 gcd 𝐵))) = (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣))) |
| 54 | 46, 53 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵)) = (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣))) |
| 55 | 42, 54 | breqtrd 4679 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∥ (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣))) |
| 56 | | oveq1 6657 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) = (𝐴 · 𝑢)) |
| 57 | | oveq1 6657 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣) = (𝐵 · 𝑣)) |
| 58 | 56, 57 | oveqan12d 6669 |
. . . . . . . . . . . . . 14
⊢ (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
| 59 | 58 | breq2d 4665 |
. . . . . . . . . . . . 13
⊢ (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → ((𝐴 gcd 𝐵) ∥ (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)) ↔ (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
| 60 | 55, 59 | syl5ibcom 235 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
| 61 | | breq2 4657 |
. . . . . . . . . . . . 13
⊢ (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((𝐴 gcd 𝐵) ∥ 𝐺 ↔ (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
| 62 | 61 | imbi2d 330 |
. . . . . . . . . . . 12
⊢ (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺) ↔ (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣))))) |
| 63 | 60, 62 | syl5ibrcom 237 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))) |
| 64 | 63 | expr 643 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺)))) |
| 65 | 64 | com23 86 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺)))) |
| 66 | 65 | rexlimdvva 3038 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺)))) |
| 67 | 32, 66 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))) |
| 68 | 67 | rexlimdvv 3037 |
. . . . . 6
⊢ (𝜑 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ ((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺)) |
| 69 | 15, 68 | syl5bir 233 |
. . . . 5
⊢ (𝜑 → ((∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺)) |
| 70 | 10, 14, 69 | mp2and 715 |
. . . 4
⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐺) |
| 71 | 31 | simpld 475 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ ℕ) |
| 72 | | dvdsle 15032 |
. . . . 5
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐺 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐺 → (𝐴 gcd 𝐵) ≤ 𝐺)) |
| 73 | 7, 71, 72 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐺 → (𝐴 gcd 𝐵) ≤ 𝐺)) |
| 74 | 70, 73 | mpd 15 |
. . 3
⊢ (𝜑 → (𝐴 gcd 𝐵) ≤ 𝐺) |
| 75 | | breq2 4657 |
. . . . 5
⊢ (𝐴 = 0 → (𝐺 ∥ 𝐴 ↔ 𝐺 ∥ 0)) |
| 76 | 16, 1, 2 | bezoutlem1 15256 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀)) |
| 77 | 16, 1, 2, 17, 18 | bezoutlem3 15258 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘𝐴) ∈ 𝑀 → 𝐺 ∥ (abs‘𝐴))) |
| 78 | 76, 77 | syld 47 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ≠ 0 → 𝐺 ∥ (abs‘𝐴))) |
| 79 | 71 | nnzd 11481 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ ℤ) |
| 80 | | dvdsabsb 15001 |
. . . . . . . 8
⊢ ((𝐺 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐺 ∥ 𝐴 ↔ 𝐺 ∥ (abs‘𝐴))) |
| 81 | 79, 1, 80 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ∥ 𝐴 ↔ 𝐺 ∥ (abs‘𝐴))) |
| 82 | 78, 81 | sylibrd 249 |
. . . . . 6
⊢ (𝜑 → (𝐴 ≠ 0 → 𝐺 ∥ 𝐴)) |
| 83 | 82 | imp 445 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 0) → 𝐺 ∥ 𝐴) |
| 84 | | dvds0 14997 |
. . . . . 6
⊢ (𝐺 ∈ ℤ → 𝐺 ∥ 0) |
| 85 | 79, 84 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∥ 0) |
| 86 | 75, 83, 85 | pm2.61ne 2879 |
. . . 4
⊢ (𝜑 → 𝐺 ∥ 𝐴) |
| 87 | | breq2 4657 |
. . . . 5
⊢ (𝐵 = 0 → (𝐺 ∥ 𝐵 ↔ 𝐺 ∥ 0)) |
| 88 | | eqid 2622 |
. . . . . . . . . 10
⊢ {𝑧 ∈ ℕ ∣
∃𝑦 ∈ ℤ
∃𝑥 ∈ ℤ
𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} |
| 89 | 88, 2, 1 | bezoutlem1 15256 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})) |
| 90 | | rexcom 3099 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
| 91 | 1 | zcnd 11483 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 92 | 91 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐴 ∈ ℂ) |
| 93 | | zcn 11382 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
| 94 | 93 | ad2antll 765 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℂ) |
| 95 | 92, 94 | mulcld 10060 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐴 · 𝑥) ∈ ℂ) |
| 96 | 2 | zcnd 11483 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 97 | 96 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐵 ∈ ℂ) |
| 98 | | zcn 11382 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℂ) |
| 99 | 98 | ad2antrl 764 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑦 ∈ ℂ) |
| 100 | 97, 99 | mulcld 10060 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℂ) |
| 101 | 95, 100 | addcomd 10238 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + (𝐴 · 𝑥))) |
| 102 | 101 | eqeq2d 2632 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))) |
| 103 | 102 | 2rexbidva 3056 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))) |
| 104 | 90, 103 | syl5bb 272 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))) |
| 105 | 104 | rabbidv 3189 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}) |
| 106 | 16, 105 | syl5eq 2668 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}) |
| 107 | 106 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘𝐵) ∈ 𝑀 ↔ (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})) |
| 108 | 89, 107 | sylibrd 249 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ 𝑀)) |
| 109 | 16, 1, 2, 17, 18 | bezoutlem3 15258 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘𝐵) ∈ 𝑀 → 𝐺 ∥ (abs‘𝐵))) |
| 110 | 108, 109 | syld 47 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ≠ 0 → 𝐺 ∥ (abs‘𝐵))) |
| 111 | | dvdsabsb 15001 |
. . . . . . . 8
⊢ ((𝐺 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐺 ∥ 𝐵 ↔ 𝐺 ∥ (abs‘𝐵))) |
| 112 | 79, 2, 111 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ∥ 𝐵 ↔ 𝐺 ∥ (abs‘𝐵))) |
| 113 | 110, 112 | sylibrd 249 |
. . . . . 6
⊢ (𝜑 → (𝐵 ≠ 0 → 𝐺 ∥ 𝐵)) |
| 114 | 113 | imp 445 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≠ 0) → 𝐺 ∥ 𝐵) |
| 115 | 87, 114, 85 | pm2.61ne 2879 |
. . . 4
⊢ (𝜑 → 𝐺 ∥ 𝐵) |
| 116 | | dvdslegcd 15226 |
. . . . 5
⊢ (((𝐺 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐺 ∥ 𝐴 ∧ 𝐺 ∥ 𝐵) → 𝐺 ≤ (𝐴 gcd 𝐵))) |
| 117 | 79, 1, 2, 18, 116 | syl31anc 1329 |
. . . 4
⊢ (𝜑 → ((𝐺 ∥ 𝐴 ∧ 𝐺 ∥ 𝐵) → 𝐺 ≤ (𝐴 gcd 𝐵))) |
| 118 | 86, 115, 117 | mp2and 715 |
. . 3
⊢ (𝜑 → 𝐺 ≤ (𝐴 gcd 𝐵)) |
| 119 | 6 | nn0red 11352 |
. . . 4
⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ ℝ) |
| 120 | 71 | nnred 11035 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ ℝ) |
| 121 | 119, 120 | letri3d 10179 |
. . 3
⊢ (𝜑 → ((𝐴 gcd 𝐵) = 𝐺 ↔ ((𝐴 gcd 𝐵) ≤ 𝐺 ∧ 𝐺 ≤ (𝐴 gcd 𝐵)))) |
| 122 | 74, 118, 121 | mpbir2and 957 |
. 2
⊢ (𝜑 → (𝐴 gcd 𝐵) = 𝐺) |
| 123 | 122, 19 | eqeltrd 2701 |
1
⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ 𝑀) |