![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxplemradcnv | Structured version Visualization version GIF version |
Description: Lemma for binomcxp 38556. By binomcxplemfrat 38550 and radcnvrat 38513 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹‘𝑘) · (𝑏↑𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
binomcxplem.f | ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
binomcxplem.s | ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
binomcxplem.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
Ref | Expression |
---|---|
binomcxplemradcnv | ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxplem.s | . . . 4 ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) | |
2 | simpl 473 | . . . . . . . . 9 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → 𝑏 = 𝑥) | |
3 | 2 | oveq1d 6665 | . . . . . . . 8 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → (𝑏↑𝑘) = (𝑥↑𝑘)) |
4 | 3 | oveq2d 6666 | . . . . . . 7 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘𝑘) · (𝑏↑𝑘)) = ((𝐹‘𝑘) · (𝑥↑𝑘))) |
5 | 4 | mpteq2dva 4744 | . . . . . 6 ⊢ (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑥↑𝑘)))) |
6 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑘 = 𝑦 → (𝐹‘𝑘) = (𝐹‘𝑦)) | |
7 | oveq2 6658 | . . . . . . . 8 ⊢ (𝑘 = 𝑦 → (𝑥↑𝑘) = (𝑥↑𝑦)) | |
8 | 6, 7 | oveq12d 6668 | . . . . . . 7 ⊢ (𝑘 = 𝑦 → ((𝐹‘𝑘) · (𝑥↑𝑘)) = ((𝐹‘𝑦) · (𝑥↑𝑦))) |
9 | 8 | cbvmptv 4750 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑥↑𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦))) |
10 | 5, 9 | syl6eq 2672 | . . . . 5 ⊢ (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
11 | 10 | cbvmptv 4750 | . . . 4 ⊢ (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
12 | 1, 11 | eqtri 2644 | . . 3 ⊢ 𝑆 = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
13 | binomcxp.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
14 | 13 | ad2antrr 762 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ) |
15 | simpr 477 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
16 | 14, 15 | bcccl 38538 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ) |
17 | binomcxplem.f | . . . 4 ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
18 | 16, 17 | fmptd 6385 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐹:ℕ0⟶ℂ) |
19 | binomcxplem.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
20 | oveq1 6657 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1)) | |
21 | 20 | fveq2d 6195 | . . . . . 6 ⊢ (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1))) |
22 | fveq2 6191 | . . . . . 6 ⊢ (𝑘 = 𝑖 → (𝐹‘𝑘) = (𝐹‘𝑖)) | |
23 | 21, 22 | oveq12d 6668 | . . . . 5 ⊢ (𝑘 = 𝑖 → ((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)) = ((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖))) |
24 | 23 | fveq2d 6195 | . . . 4 ⊢ (𝑘 = 𝑖 → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘))) = (abs‘((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖)))) |
25 | 24 | cbvmptv 4750 | . . 3 ⊢ (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) = (𝑖 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖)))) |
26 | nn0uz 11722 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
27 | 0nn0 11307 | . . . 4 ⊢ 0 ∈ ℕ0 | |
28 | 27 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 0 ∈ ℕ0) |
29 | 17 | a1i 11 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
30 | simpr 477 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → 𝑗 = 𝑖) | |
31 | 30 | oveq2d 6666 | . . . . 5 ⊢ ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑖)) |
32 | simpr 477 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
33 | ovexd 6680 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ∈ V) | |
34 | 29, 31, 32, 33 | fvmptd 6288 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹‘𝑖) = (𝐶C𝑐𝑖)) |
35 | elfznn0 12433 | . . . . . . 7 ⊢ (𝐶 ∈ (0...(𝑖 − 1)) → 𝐶 ∈ ℕ0) | |
36 | 35 | con3i 150 | . . . . . 6 ⊢ (¬ 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑖 − 1))) |
37 | 36 | ad2antlr 763 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑖 − 1))) |
38 | 13 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ) |
39 | simpr 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
40 | 38, 39 | bcc0 38539 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) = 0 ↔ 𝐶 ∈ (0...(𝑖 − 1)))) |
41 | 40 | necon3abid 2830 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1)))) |
42 | 41 | adantlr 751 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1)))) |
43 | 37, 42 | mpbird 247 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ≠ 0) |
44 | 34, 43 | eqnetrd 2861 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹‘𝑖) ≠ 0) |
45 | binomcxp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
46 | binomcxp.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
47 | binomcxp.lt | . . . 4 ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) | |
48 | 45, 46, 47, 13, 17 | binomcxplemfrat 38550 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) ⇝ 1) |
49 | ax-1ne0 10005 | . . . 4 ⊢ 1 ≠ 0 | |
50 | 49 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ≠ 0) |
51 | 12, 18, 19, 25, 26, 28, 44, 48, 50 | radcnvrat 38513 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = (1 / 1)) |
52 | 1div1e1 10717 | . 2 ⊢ (1 / 1) = 1 | |
53 | 51, 52 | syl6eq 2672 | 1 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 {crab 2916 Vcvv 3200 class class class wbr 4653 ↦ cmpt 4729 dom cdm 5114 ‘cfv 5888 (class class class)co 6650 supcsup 8346 ℂcc 9934 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 · cmul 9941 ℝ*cxr 10073 < clt 10074 − cmin 10266 / cdiv 10684 ℕ0cn0 11292 ℝ+crp 11832 ...cfz 12326 seqcseq 12801 ↑cexp 12860 abscabs 13974 ⇝ cli 14215 C𝑐cbcc 38535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-ioo 12179 df-ico 12181 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-fac 13061 df-hash 13118 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-prod 14636 df-fallfac 14738 df-bcc 38536 |
This theorem is referenced by: binomcxplemdvbinom 38552 binomcxplemnotnn0 38555 |
Copyright terms: Public domain | W3C validator |