Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemradcnv Structured version   Visualization version   Unicode version

Theorem binomcxplemradcnv 38551
Description: Lemma for binomcxp 38556. By binomcxplemfrat 38550 and radcnvrat 38513 the radius of convergence of power series  sum_ k  e.  NN0 ( ( F `  k )  x.  (
b ^ k ) ) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a  |-  ( ph  ->  A  e.  RR+ )
binomcxp.b  |-  ( ph  ->  B  e.  RR )
binomcxp.lt  |-  ( ph  ->  ( abs `  B
)  <  ( abs `  A ) )
binomcxp.c  |-  ( ph  ->  C  e.  CC )
binomcxplem.f  |-  F  =  ( j  e.  NN0  |->  ( CC𝑐 j ) )
binomcxplem.s  |-  S  =  ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) )
binomcxplem.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
Assertion
Ref Expression
binomcxplemradcnv  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  R  =  1 )
Distinct variable groups:    C, k    k, b, F    j, k, ph    C, j    S, r
Allowed substitution hints:    ph( r, b)    A( j, k, r, b)    B( j, k, r, b)    C( r, b)    R( j, k, r, b)    S( j, k, b)    F( j, r)

Proof of Theorem binomcxplemradcnv
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.s . . . 4  |-  S  =  ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  (
b ^ k ) ) ) )
2 simpl 473 . . . . . . . . 9  |-  ( ( b  =  x  /\  k  e.  NN0 )  -> 
b  =  x )
32oveq1d 6665 . . . . . . . 8  |-  ( ( b  =  x  /\  k  e.  NN0 )  -> 
( b ^ k
)  =  ( x ^ k ) )
43oveq2d 6666 . . . . . . 7  |-  ( ( b  =  x  /\  k  e.  NN0 )  -> 
( ( F `  k )  x.  (
b ^ k ) )  =  ( ( F `  k )  x.  ( x ^
k ) ) )
54mpteq2dva 4744 . . . . . 6  |-  ( b  =  x  ->  (
k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) )  =  ( k  e. 
NN0  |->  ( ( F `
 k )  x.  ( x ^ k
) ) ) )
6 fveq2 6191 . . . . . . . 8  |-  ( k  =  y  ->  ( F `  k )  =  ( F `  y ) )
7 oveq2 6658 . . . . . . . 8  |-  ( k  =  y  ->  (
x ^ k )  =  ( x ^
y ) )
86, 7oveq12d 6668 . . . . . . 7  |-  ( k  =  y  ->  (
( F `  k
)  x.  ( x ^ k ) )  =  ( ( F `
 y )  x.  ( x ^ y
) ) )
98cbvmptv 4750 . . . . . 6  |-  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( x ^
k ) ) )  =  ( y  e. 
NN0  |->  ( ( F `
 y )  x.  ( x ^ y
) ) )
105, 9syl6eq 2672 . . . . 5  |-  ( b  =  x  ->  (
k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) )  =  ( y  e. 
NN0  |->  ( ( F `
 y )  x.  ( x ^ y
) ) ) )
1110cbvmptv 4750 . . . 4  |-  ( b  e.  CC  |->  ( k  e.  NN0  |->  ( ( F `  k )  x.  ( b ^
k ) ) ) )  =  ( x  e.  CC  |->  ( y  e.  NN0  |->  ( ( F `  y )  x.  ( x ^
y ) ) ) )
121, 11eqtri 2644 . . 3  |-  S  =  ( x  e.  CC  |->  ( y  e.  NN0  |->  ( ( F `  y )  x.  (
x ^ y ) ) ) )
13 binomcxp.c . . . . . 6  |-  ( ph  ->  C  e.  CC )
1413ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  j  e.  NN0 )  ->  C  e.  CC )
15 simpr 477 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  j  e.  NN0 )  -> 
j  e.  NN0 )
1614, 15bcccl 38538 . . . 4  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  j  e.  NN0 )  -> 
( CC𝑐 j )  e.  CC )
17 binomcxplem.f . . . 4  |-  F  =  ( j  e.  NN0  |->  ( CC𝑐 j ) )
1816, 17fmptd 6385 . . 3  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  F : NN0 --> CC )
19 binomcxplem.r . . 3  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( S `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
20 oveq1 6657 . . . . . . 7  |-  ( k  =  i  ->  (
k  +  1 )  =  ( i  +  1 ) )
2120fveq2d 6195 . . . . . 6  |-  ( k  =  i  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( i  +  1 ) ) )
22 fveq2 6191 . . . . . 6  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
2321, 22oveq12d 6668 . . . . 5  |-  ( k  =  i  ->  (
( F `  (
k  +  1 ) )  /  ( F `
 k ) )  =  ( ( F `
 ( i  +  1 ) )  / 
( F `  i
) ) )
2423fveq2d 6195 . . . 4  |-  ( k  =  i  ->  ( abs `  ( ( F `
 ( k  +  1 ) )  / 
( F `  k
) ) )  =  ( abs `  (
( F `  (
i  +  1 ) )  /  ( F `
 i ) ) ) )
2524cbvmptv 4750 . . 3  |-  ( k  e.  NN0  |->  ( abs `  ( ( F `  ( k  +  1 ) )  /  ( F `  k )
) ) )  =  ( i  e.  NN0  |->  ( abs `  ( ( F `  ( i  +  1 ) )  /  ( F `  i ) ) ) )
26 nn0uz 11722 . . 3  |-  NN0  =  ( ZZ>= `  0 )
27 0nn0 11307 . . . 4  |-  0  e.  NN0
2827a1i 11 . . 3  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  0  e.  NN0 )
2917a1i 11 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  i  e.  NN0 )  ->  F  =  ( j  e.  NN0  |->  ( CC𝑐 j ) ) )
30 simpr 477 . . . . . 6  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  i  e.  NN0 )  /\  j  =  i )  ->  j  =  i )
3130oveq2d 6666 . . . . 5  |-  ( ( ( ( ph  /\  -.  C  e.  NN0 )  /\  i  e.  NN0 )  /\  j  =  i )  ->  ( CC𝑐 j
)  =  ( CC𝑐 i ) )
32 simpr 477 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  i  e.  NN0 )  -> 
i  e.  NN0 )
33 ovexd 6680 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  i  e.  NN0 )  -> 
( CC𝑐 i )  e.  _V )
3429, 31, 32, 33fvmptd 6288 . . . 4  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  i  e.  NN0 )  -> 
( F `  i
)  =  ( CC𝑐 i ) )
35 elfznn0 12433 . . . . . . 7  |-  ( C  e.  ( 0 ... ( i  -  1 ) )  ->  C  e.  NN0 )
3635con3i 150 . . . . . 6  |-  ( -.  C  e.  NN0  ->  -.  C  e.  ( 0 ... ( i  - 
1 ) ) )
3736ad2antlr 763 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  i  e.  NN0 )  ->  -.  C  e.  (
0 ... ( i  - 
1 ) ) )
3813adantr 481 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  C  e.  CC )
39 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  NN0 )
4038, 39bcc0 38539 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( ( CC𝑐 i )  =  0  <-> 
C  e.  ( 0 ... ( i  - 
1 ) ) ) )
4140necon3abid 2830 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( ( CC𝑐 i )  =/=  0  <->  -.  C  e.  ( 0 ... ( i  - 
1 ) ) ) )
4241adantlr 751 . . . . 5  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  i  e.  NN0 )  -> 
( ( CC𝑐 i )  =/=  0  <->  -.  C  e.  ( 0 ... (
i  -  1 ) ) ) )
4337, 42mpbird 247 . . . 4  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  i  e.  NN0 )  -> 
( CC𝑐 i )  =/=  0
)
4434, 43eqnetrd 2861 . . 3  |-  ( ( ( ph  /\  -.  C  e.  NN0 )  /\  i  e.  NN0 )  -> 
( F `  i
)  =/=  0 )
45 binomcxp.a . . . 4  |-  ( ph  ->  A  e.  RR+ )
46 binomcxp.b . . . 4  |-  ( ph  ->  B  e.  RR )
47 binomcxp.lt . . . 4  |-  ( ph  ->  ( abs `  B
)  <  ( abs `  A ) )
4845, 46, 47, 13, 17binomcxplemfrat 38550 . . 3  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  (
k  e.  NN0  |->  ( abs `  ( ( F `  ( k  +  1 ) )  /  ( F `  k )
) ) )  ~~>  1 )
49 ax-1ne0 10005 . . . 4  |-  1  =/=  0
5049a1i 11 . . 3  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  1  =/=  0 )
5112, 18, 19, 25, 26, 28, 44, 48, 50radcnvrat 38513 . 2  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  R  =  ( 1  / 
1 ) )
52 1div1e1 10717 . 2  |-  ( 1  /  1 )  =  1
5351, 52syl6eq 2672 1  |-  ( (
ph  /\  -.  C  e.  NN0 )  ->  R  =  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   RR*cxr 10073    < clt 10074    - cmin 10266    / cdiv 10684   NN0cn0 11292   RR+crp 11832   ...cfz 12326    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215  C𝑐cbcc 38535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-fallfac 14738  df-bcc 38536
This theorem is referenced by:  binomcxplemdvbinom  38552  binomcxplemnotnn0  38555
  Copyright terms: Public domain W3C validator