MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly1 Structured version   Visualization version   GIF version

Theorem bpoly1 14782
Description: The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
bpoly1 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))

Proof of Theorem bpoly1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1nn0 11308 . . 3 1 ∈ ℕ0
2 bpolyval 14780 . . 3 ((1 ∈ ℕ0𝑋 ∈ ℂ) → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))))
31, 2mpan 706 . 2 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))))
4 exp1 12866 . . 3 (𝑋 ∈ ℂ → (𝑋↑1) = 𝑋)
5 1m1e0 11089 . . . . . 6 (1 − 1) = 0
65oveq2i 6661 . . . . 5 (0...(1 − 1)) = (0...0)
76sumeq1i 14428 . . . 4 Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))
8 0z 11388 . . . . . 6 0 ∈ ℤ
9 bpoly0 14781 . . . . . . . . . 10 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
109oveq1d 6665 . . . . . . . . 9 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 2) = (1 / 2))
1110oveq2d 6666 . . . . . . . 8 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 · (1 / 2)))
12 halfcn 11247 . . . . . . . . 9 (1 / 2) ∈ ℂ
1312mulid2i 10043 . . . . . . . 8 (1 · (1 / 2)) = (1 / 2)
1411, 13syl6eq 2672 . . . . . . 7 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 / 2))
1514, 12syl6eqel 2709 . . . . . 6 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ)
16 oveq2 6658 . . . . . . . . 9 (𝑘 = 0 → (1C𝑘) = (1C0))
17 bcn0 13097 . . . . . . . . . 10 (1 ∈ ℕ0 → (1C0) = 1)
181, 17ax-mp 5 . . . . . . . . 9 (1C0) = 1
1916, 18syl6eq 2672 . . . . . . . 8 (𝑘 = 0 → (1C𝑘) = 1)
20 oveq1 6657 . . . . . . . . 9 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
21 oveq2 6658 . . . . . . . . . . . 12 (𝑘 = 0 → (1 − 𝑘) = (1 − 0))
22 1m0e1 11131 . . . . . . . . . . . 12 (1 − 0) = 1
2321, 22syl6eq 2672 . . . . . . . . . . 11 (𝑘 = 0 → (1 − 𝑘) = 1)
2423oveq1d 6665 . . . . . . . . . 10 (𝑘 = 0 → ((1 − 𝑘) + 1) = (1 + 1))
25 df-2 11079 . . . . . . . . . 10 2 = (1 + 1)
2624, 25syl6eqr 2674 . . . . . . . . 9 (𝑘 = 0 → ((1 − 𝑘) + 1) = 2)
2720, 26oveq12d 6668 . . . . . . . 8 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 2))
2819, 27oveq12d 6668 . . . . . . 7 (𝑘 = 0 → ((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
2928fsum1 14476 . . . . . 6 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
308, 15, 29sylancr 695 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
3130, 14eqtrd 2656 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2))
327, 31syl5eq 2668 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2))
334, 32oveq12d 6668 . 2 (𝑋 ∈ ℂ → ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))) = (𝑋 − (1 / 2)))
343, 33eqtrd 2656 1 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266   / cdiv 10684  2c2 11070  0cn0 11292  cz 11377  ...cfz 12326  cexp 12860  Ccbc 13089  Σcsu 14416   BernPoly cbp 14777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-bpoly 14778
This theorem is referenced by:  bpoly2  14788  bpoly3  14789  bpoly4  14790
  Copyright terms: Public domain W3C validator