MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolyval Structured version   Visualization version   Unicode version

Theorem bpolyval 14780
Description: The value of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
bpolyval  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
Distinct variable groups:    k, N    k, X

Proof of Theorem bpolyval
Dummy variables  g  m  n  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . . . 6  |-  ( # `  dom  c )  e. 
_V
2 oveq2 6658 . . . . . . 7  |-  ( n  =  ( # `  dom  c )  ->  ( X ^ n )  =  ( X ^ ( # `
 dom  c )
) )
3 oveq1 6657 . . . . . . . . 9  |-  ( n  =  ( # `  dom  c )  ->  (
n  _C  m )  =  ( ( # `  dom  c )  _C  m ) )
4 oveq1 6657 . . . . . . . . . . 11  |-  ( n  =  ( # `  dom  c )  ->  (
n  -  m )  =  ( ( # `  dom  c )  -  m ) )
54oveq1d 6665 . . . . . . . . . 10  |-  ( n  =  ( # `  dom  c )  ->  (
( n  -  m
)  +  1 )  =  ( ( (
# `  dom  c )  -  m )  +  1 ) )
65oveq2d 6666 . . . . . . . . 9  |-  ( n  =  ( # `  dom  c )  ->  (
( c `  m
)  /  ( ( n  -  m )  +  1 ) )  =  ( ( c `
 m )  / 
( ( ( # `  dom  c )  -  m )  +  1 ) ) )
73, 6oveq12d 6668 . . . . . . . 8  |-  ( n  =  ( # `  dom  c )  ->  (
( n  _C  m
)  x.  ( ( c `  m )  /  ( ( n  -  m )  +  1 ) ) )  =  ( ( (
# `  dom  c )  _C  m )  x.  ( ( c `  m )  /  (
( ( # `  dom  c )  -  m
)  +  1 ) ) ) )
87sumeq2sdv 14435 . . . . . . 7  |-  ( n  =  ( # `  dom  c )  ->  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `
 m )  / 
( ( n  -  m )  +  1 ) ) )  = 
sum_ m  e.  dom  c ( ( (
# `  dom  c )  _C  m )  x.  ( ( c `  m )  /  (
( ( # `  dom  c )  -  m
)  +  1 ) ) ) )
92, 8oveq12d 6668 . . . . . 6  |-  ( n  =  ( # `  dom  c )  ->  (
( X ^ n
)  -  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `
 m )  / 
( ( n  -  m )  +  1 ) ) ) )  =  ( ( X ^ ( # `  dom  c ) )  -  sum_ m  e.  dom  c
( ( ( # `  dom  c )  _C  m )  x.  (
( c `  m
)  /  ( ( ( # `  dom  c )  -  m
)  +  1 ) ) ) ) )
101, 9csbie 3559 . . . . 5  |-  [_ ( # `
 dom  c )  /  n ]_ ( ( X ^ n )  -  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `  m )  /  (
( n  -  m
)  +  1 ) ) ) )  =  ( ( X ^
( # `  dom  c
) )  -  sum_ m  e.  dom  c ( ( ( # `  dom  c )  _C  m
)  x.  ( ( c `  m )  /  ( ( (
# `  dom  c )  -  m )  +  1 ) ) ) )
11 oveq2 6658 . . . . . . . . . 10  |-  ( m  =  k  ->  (
n  _C  m )  =  ( n  _C  k ) )
12 fveq2 6191 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
c `  m )  =  ( c `  k ) )
13 oveq2 6658 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
n  -  m )  =  ( n  -  k ) )
1413oveq1d 6665 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
( n  -  m
)  +  1 )  =  ( ( n  -  k )  +  1 ) )
1512, 14oveq12d 6668 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( c `  m
)  /  ( ( n  -  m )  +  1 ) )  =  ( ( c `
 k )  / 
( ( n  -  k )  +  1 ) ) )
1611, 15oveq12d 6668 . . . . . . . . 9  |-  ( m  =  k  ->  (
( n  _C  m
)  x.  ( ( c `  m )  /  ( ( n  -  m )  +  1 ) ) )  =  ( ( n  _C  k )  x.  ( ( c `  k )  /  (
( n  -  k
)  +  1 ) ) ) )
1716cbvsumv 14426 . . . . . . . 8  |-  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `
 m )  / 
( ( n  -  m )  +  1 ) ) )  = 
sum_ k  e.  dom  c ( ( n  _C  k )  x.  ( ( c `  k )  /  (
( n  -  k
)  +  1 ) ) )
18 dmeq 5324 . . . . . . . . 9  |-  ( c  =  g  ->  dom  c  =  dom  g )
19 fveq1 6190 . . . . . . . . . . . 12  |-  ( c  =  g  ->  (
c `  k )  =  ( g `  k ) )
2019oveq1d 6665 . . . . . . . . . . 11  |-  ( c  =  g  ->  (
( c `  k
)  /  ( ( n  -  k )  +  1 ) )  =  ( ( g `
 k )  / 
( ( n  -  k )  +  1 ) ) )
2120oveq2d 6666 . . . . . . . . . 10  |-  ( c  =  g  ->  (
( n  _C  k
)  x.  ( ( c `  k )  /  ( ( n  -  k )  +  1 ) ) )  =  ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) )
2221adantr 481 . . . . . . . . 9  |-  ( ( c  =  g  /\  k  e.  dom  c )  ->  ( ( n  _C  k )  x.  ( ( c `  k )  /  (
( n  -  k
)  +  1 ) ) )  =  ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) )
2318, 22sumeq12dv 14437 . . . . . . . 8  |-  ( c  =  g  ->  sum_ k  e.  dom  c ( ( n  _C  k )  x.  ( ( c `
 k )  / 
( ( n  -  k )  +  1 ) ) )  = 
sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) )
2417, 23syl5eq 2668 . . . . . . 7  |-  ( c  =  g  ->  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `
 m )  / 
( ( n  -  m )  +  1 ) ) )  = 
sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) )
2524oveq2d 6666 . . . . . 6  |-  ( c  =  g  ->  (
( X ^ n
)  -  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `
 m )  / 
( ( n  -  m )  +  1 ) ) ) )  =  ( ( X ^ n )  -  sum_ k  e.  dom  g
( ( n  _C  k )  x.  (
( g `  k
)  /  ( ( n  -  k )  +  1 ) ) ) ) )
2625csbeq2dv 3992 . . . . 5  |-  ( c  =  g  ->  [_ ( # `
 dom  c )  /  n ]_ ( ( X ^ n )  -  sum_ m  e.  dom  c ( ( n  _C  m )  x.  ( ( c `  m )  /  (
( n  -  m
)  +  1 ) ) ) )  = 
[_ ( # `  dom  c )  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )
2710, 26syl5eqr 2670 . . . 4  |-  ( c  =  g  ->  (
( X ^ ( # `
 dom  c )
)  -  sum_ m  e.  dom  c ( ( ( # `  dom  c )  _C  m
)  x.  ( ( c `  m )  /  ( ( (
# `  dom  c )  -  m )  +  1 ) ) ) )  =  [_ ( # `
 dom  c )  /  n ]_ ( ( X ^ n )  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) ) )
2818fveq2d 6195 . . . . 5  |-  ( c  =  g  ->  ( # `
 dom  c )  =  ( # `  dom  g ) )
2928csbeq1d 3540 . . . 4  |-  ( c  =  g  ->  [_ ( # `
 dom  c )  /  n ]_ ( ( X ^ n )  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) )  = 
[_ ( # `  dom  g )  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )
3027, 29eqtrd 2656 . . 3  |-  ( c  =  g  ->  (
( X ^ ( # `
 dom  c )
)  -  sum_ m  e.  dom  c ( ( ( # `  dom  c )  _C  m
)  x.  ( ( c `  m )  /  ( ( (
# `  dom  c )  -  m )  +  1 ) ) ) )  =  [_ ( # `
 dom  g )  /  n ]_ ( ( X ^ n )  -  sum_ k  e.  dom  g ( ( n  _C  k )  x.  ( ( g `  k )  /  (
( n  -  k
)  +  1 ) ) ) ) )
3130cbvmptv 4750 . 2  |-  ( c  e.  _V  |->  ( ( X ^ ( # `  dom  c ) )  -  sum_ m  e.  dom  c ( ( (
# `  dom  c )  _C  m )  x.  ( ( c `  m )  /  (
( ( # `  dom  c )  -  m
)  +  1 ) ) ) ) )  =  ( g  e. 
_V  |->  [_ ( # `  dom  g )  /  n ]_ ( ( X ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) )
32 eqid 2622 . 2  |- wrecs (  <  ,  NN0 ,  ( c  e.  _V  |->  ( ( X ^ ( # `  dom  c ) )  -  sum_ m  e.  dom  c ( ( (
# `  dom  c )  _C  m )  x.  ( ( c `  m )  /  (
( ( # `  dom  c )  -  m
)  +  1 ) ) ) ) ) )  = wrecs (  <  ,  NN0 ,  ( c  e.  _V  |->  ( ( X ^ ( # `  dom  c ) )  -  sum_ m  e.  dom  c ( ( (
# `  dom  c )  _C  m )  x.  ( ( c `  m )  /  (
( ( # `  dom  c )  -  m
)  +  1 ) ) ) ) ) )
3331, 32bpolylem 14779 1  |-  ( ( N  e.  NN0  /\  X  e.  CC )  ->  ( N BernPoly  X )  =  ( ( X ^ N )  -  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( N  -  k
)  +  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650  wrecscwrecs 7406   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NN0cn0 11292   ...cfz 12326   ^cexp 12860    _C cbc 13089   #chash 13117   sum_csu 14416   BernPoly cbp 14777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-hash 13118  df-sum 14417  df-bpoly 14778
This theorem is referenced by:  bpoly0  14781  bpoly1  14782  bpolycl  14783  bpolysum  14784  bpolydiflem  14785  bpoly2  14788  bpoly3  14789  bpoly4  14790
  Copyright terms: Public domain W3C validator