| Step | Hyp | Ref
| Expression |
| 1 | | hashcl 13147 |
. . 3
⊢ (𝑉 ∈ Fin →
(#‘𝑉) ∈
ℕ0) |
| 2 | | df-clel 2618 |
. . . 4
⊢
((#‘𝑉) ∈
ℕ0 ↔ ∃𝑛(𝑛 = (#‘𝑉) ∧ 𝑛 ∈
ℕ0)) |
| 3 | | eqeq2 2633 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 0 → ((#‘𝑣) = 𝑥 ↔ (#‘𝑣) = 0)) |
| 4 | 3 | anbi2d 740 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = 0))) |
| 5 | 4 | imbi1d 331 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓))) |
| 6 | 5 | 2albidv 1851 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓))) |
| 7 | | eqeq2 2633 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((#‘𝑣) = 𝑥 ↔ (#‘𝑣) = 𝑦)) |
| 8 | 7 | anbi2d 740 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦))) |
| 9 | 8 | imbi1d 331 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓))) |
| 10 | 9 | 2albidv 1851 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓))) |
| 11 | | eqeq2 2633 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 + 1) → ((#‘𝑣) = 𝑥 ↔ (#‘𝑣) = (𝑦 + 1))) |
| 12 | 11 | anbi2d 740 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 + 1) → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)))) |
| 13 | 12 | imbi1d 331 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + 1) → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓))) |
| 14 | 13 | 2albidv 1851 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 + 1) → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓))) |
| 15 | | eqeq2 2633 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑛 → ((#‘𝑣) = 𝑥 ↔ (#‘𝑣) = 𝑛)) |
| 16 | 15 | anbi2d 740 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛))) |
| 17 | 16 | imbi1d 331 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓))) |
| 18 | 17 | 2albidv 1851 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑛 → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓))) |
| 19 | | brfi1indOLD.base |
. . . . . . . . . . . 12
⊢ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓) |
| 20 | 19 | gen2 1723 |
. . . . . . . . . . 11
⊢
∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓) |
| 21 | | breq12 4658 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝑣𝐺𝑒 ↔ 𝑤𝐺𝑓)) |
| 22 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑤 → (#‘𝑣) = (#‘𝑤)) |
| 23 | 22 | eqeq1d 2624 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑤 → ((#‘𝑣) = 𝑦 ↔ (#‘𝑤) = 𝑦)) |
| 24 | 23 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → ((#‘𝑣) = 𝑦 ↔ (#‘𝑤) = 𝑦)) |
| 25 | 21, 24 | anbi12d 747 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) ↔ (𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦))) |
| 26 | | brfi1indOLD.2 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
| 27 | 25, 26 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓) ↔ ((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃))) |
| 28 | 27 | cbval2v 2285 |
. . . . . . . . . . . 12
⊢
(∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓) ↔ ∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃)) |
| 29 | | nn0re 11301 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℝ) |
| 30 | | 1re 10039 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℝ |
| 31 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℕ0
→ 1 ∈ ℝ) |
| 32 | | nn0ge0 11318 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℕ0
→ 0 ≤ 𝑦) |
| 33 | | 0lt1 10550 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 <
1 |
| 34 | 33 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℕ0
→ 0 < 1) |
| 35 | 29, 31, 32, 34 | addgegt0d 10601 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℕ0
→ 0 < (𝑦 +
1)) |
| 36 | 35 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℕ0
∧ (#‘𝑣) = (𝑦 + 1)) → 0 < (𝑦 + 1)) |
| 37 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℕ0
∧ (#‘𝑣) = (𝑦 + 1)) → (#‘𝑣) = (𝑦 + 1)) |
| 38 | 36, 37 | breqtrrd 4681 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ0
∧ (#‘𝑣) = (𝑦 + 1)) → 0 <
(#‘𝑣)) |
| 39 | 38 | adantrl 752 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℕ0
∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1))) → 0 < (#‘𝑣)) |
| 40 | | vex 3203 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑣 ∈ V |
| 41 | | hashgt0elex 13189 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ V ∧ 0 <
(#‘𝑣)) →
∃𝑛 𝑛 ∈ 𝑣) |
| 42 | | brfi1indOLD.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹) |
| 43 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → 𝑣 ∈ V) |
| 44 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → 𝑛 ∈ 𝑣) |
| 45 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → 𝑦 ∈ ℕ0) |
| 46 | | brfi1indlem 13278 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑣 ∈ V ∧ 𝑛 ∈ 𝑣 ∧ 𝑦 ∈ ℕ0) →
((#‘𝑣) = (𝑦 + 1) → (#‘(𝑣 ∖ {𝑛})) = 𝑦)) |
| 47 | 43, 44, 45, 46 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → ((#‘𝑣) = (𝑦 + 1) → (#‘(𝑣 ∖ {𝑛})) = 𝑦)) |
| 48 | 47 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → (#‘(𝑣 ∖ {𝑛})) = 𝑦) |
| 49 | | peano2nn0 11333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ0) |
| 50 | 49 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → (𝑦 + 1) ∈
ℕ0) |
| 51 | 50 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (𝑦 + 1) ∈
ℕ0) |
| 52 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → 𝑣𝐺𝑒) |
| 53 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (#‘𝑣) = (𝑦 + 1)) |
| 54 | | simprlr 803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) → 𝑛 ∈ 𝑣) |
| 55 | 54 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → 𝑛 ∈ 𝑣) |
| 56 | 52, 53, 55 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) |
| 57 | 51, 56 | jca 554 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) |
| 58 | | difexg 4808 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑣 ∈ V → (𝑣 ∖ {𝑛}) ∈ V) |
| 59 | 40, 58 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑣 ∖ {𝑛}) ∈ V |
| 60 | | brfi1indOLD.f |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ 𝐹 ∈ 𝑈 |
| 61 | | breq12 4658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝑤𝐺𝑓 ↔ (𝑣 ∖ {𝑛})𝐺𝐹)) |
| 62 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑤 = (𝑣 ∖ {𝑛}) → (#‘𝑤) = (#‘(𝑣 ∖ {𝑛}))) |
| 63 | 62 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑤 = (𝑣 ∖ {𝑛}) → ((#‘𝑤) = 𝑦 ↔ (#‘(𝑣 ∖ {𝑛})) = 𝑦)) |
| 64 | 63 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((#‘𝑤) = 𝑦 ↔ (#‘(𝑣 ∖ {𝑛})) = 𝑦)) |
| 65 | 61, 64 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) ↔ ((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦))) |
| 66 | | brfi1indOLD.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
| 67 | 65, 66 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ↔ (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒))) |
| 68 | 67 | spc2gv 3296 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑣 ∖ {𝑛}) ∈ V ∧ 𝐹 ∈ 𝑈) → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒))) |
| 69 | 59, 60, 68 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒)) |
| 70 | 69 | expdimp 453 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) → ((#‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜒)) |
| 71 | 70 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((#‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜒)) |
| 72 | | brfi1indOLD.step |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑦 + 1) ∈ ℕ0
∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
| 73 | 57, 71, 72 | syl6an 568 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((#‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜓)) |
| 74 | 73 | exp41 638 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → (𝑣𝐺𝑒 → ((#‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜓))))) |
| 75 | 74 | com15 101 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((#‘(𝑣 ∖
{𝑛})) = 𝑦 → ((𝑣 ∖ {𝑛})𝐺𝐹 → (((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
| 76 | 75 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((#‘(𝑣 ∖
{𝑛})) = 𝑦 → (((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
| 77 | 48, 76 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))) |
| 78 | 77 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → ((#‘𝑣) = (𝑦 + 1) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
| 79 | 78 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((#‘𝑣) = (𝑦 + 1) → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
| 80 | 79 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ℕ0
→ (𝑛 ∈ 𝑣 → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((#‘𝑣) = (𝑦 + 1) → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))) |
| 81 | 80 | com15 101 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑣𝐺𝑒 → (𝑛 ∈ 𝑣 → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))) |
| 82 | 81 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
| 83 | 42, 82 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))) |
| 84 | 83 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣𝐺𝑒 → (𝑛 ∈ 𝑣 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
| 85 | 84 | com4l 92 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ 𝑣 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
| 86 | 85 | exlimiv 1858 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑛 𝑛 ∈ 𝑣 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
| 87 | 41, 86 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 ∈ V ∧ 0 <
(#‘𝑣)) →
((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
| 88 | 87 | ex 450 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ V → (0 <
(#‘𝑣) →
((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))) |
| 89 | 88 | com25 99 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ V → (𝑣𝐺𝑒 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (0 <
(#‘𝑣) →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))) |
| 90 | 40, 89 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣𝐺𝑒 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (0 <
(#‘𝑣) →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))) |
| 91 | 90 | imp 445 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → (𝑦 ∈ ℕ0 → (0 <
(#‘𝑣) →
(∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))) |
| 92 | 91 | impcom 446 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℕ0
∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1))) → (0 < (#‘𝑣) → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))) |
| 93 | 39, 92 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ0
∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1))) → (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)) |
| 94 | 93 | impancom 456 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ0
∧ ∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃)) → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓)) |
| 95 | 94 | alrimivv 1856 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ0
∧ ∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃)) → ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓)) |
| 96 | 95 | ex 450 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℕ0
→ (∀𝑤∀𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓))) |
| 97 | 28, 96 | syl5bi 232 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ0
→ (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓) → ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓))) |
| 98 | 6, 10, 14, 18, 20, 97 | nn0ind 11472 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ ∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓)) |
| 99 | | brfi1indOLD.r |
. . . . . . . . . . . . . 14
⊢ Rel 𝐺 |
| 100 | 99 | brrelexi 5158 |
. . . . . . . . . . . . 13
⊢ (𝑉𝐺𝐸 → 𝑉 ∈ V) |
| 101 | 99 | brrelex2i 5159 |
. . . . . . . . . . . . 13
⊢ (𝑉𝐺𝐸 → 𝐸 ∈ V) |
| 102 | 100, 101 | jca 554 |
. . . . . . . . . . . 12
⊢ (𝑉𝐺𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
| 103 | | breq12 4658 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑣𝐺𝑒 ↔ 𝑉𝐺𝐸)) |
| 104 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = 𝑉 → (#‘𝑣) = (#‘𝑉)) |
| 105 | 104 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑉 → ((#‘𝑣) = 𝑛 ↔ (#‘𝑉) = 𝑛)) |
| 106 | 105 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → ((#‘𝑣) = 𝑛 ↔ (#‘𝑉) = 𝑛)) |
| 107 | 103, 106 | anbi12d 747 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) ↔ (𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛))) |
| 108 | | brfi1indOLD.1 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
| 109 | 107, 108 | imbi12d 334 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) ↔ ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → 𝜑))) |
| 110 | 109 | spc2gv 3296 |
. . . . . . . . . . . . . 14
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → 𝜑))) |
| 111 | 110 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → 𝜑))) |
| 112 | 111 | expd 452 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝐺𝐸 → ((#‘𝑉) = 𝑛 → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → 𝜑)))) |
| 113 | 102, 112 | mpcom 38 |
. . . . . . . . . . 11
⊢ (𝑉𝐺𝐸 → ((#‘𝑉) = 𝑛 → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → 𝜑))) |
| 114 | 113 | imp 445 |
. . . . . . . . . 10
⊢ ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → (∀𝑣∀𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → 𝜑)) |
| 115 | 98, 114 | syl5 34 |
. . . . . . . . 9
⊢ ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → (𝑛 ∈ ℕ0 → 𝜑)) |
| 116 | 115 | expcom 451 |
. . . . . . . 8
⊢
((#‘𝑉) = 𝑛 → (𝑉𝐺𝐸 → (𝑛 ∈ ℕ0 → 𝜑))) |
| 117 | 116 | com23 86 |
. . . . . . 7
⊢
((#‘𝑉) = 𝑛 → (𝑛 ∈ ℕ0 → (𝑉𝐺𝐸 → 𝜑))) |
| 118 | 117 | eqcoms 2630 |
. . . . . 6
⊢ (𝑛 = (#‘𝑉) → (𝑛 ∈ ℕ0 → (𝑉𝐺𝐸 → 𝜑))) |
| 119 | 118 | imp 445 |
. . . . 5
⊢ ((𝑛 = (#‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑉𝐺𝐸 → 𝜑)) |
| 120 | 119 | exlimiv 1858 |
. . . 4
⊢
(∃𝑛(𝑛 = (#‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑉𝐺𝐸 → 𝜑)) |
| 121 | 2, 120 | sylbi 207 |
. . 3
⊢
((#‘𝑉) ∈
ℕ0 → (𝑉𝐺𝐸 → 𝜑)) |
| 122 | 1, 121 | syl 17 |
. 2
⊢ (𝑉 ∈ Fin → (𝑉𝐺𝐸 → 𝜑)) |
| 123 | 122 | impcom 446 |
1
⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin) → 𝜑) |