MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmvsubval2 Structured version   Visualization version   GIF version

Theorem clmvsubval2 22910
Description: Value of vector subtraction on a subcomplex module. (Contributed by Mario Carneiro, 19-Nov-2013.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
clmvsubval.v 𝑉 = (Base‘𝑊)
clmvsubval.p + = (+g𝑊)
clmvsubval.m = (-g𝑊)
clmvsubval.f 𝐹 = (Scalar‘𝑊)
clmvsubval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
clmvsubval2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = ((-1 · 𝐵) + 𝐴))

Proof of Theorem clmvsubval2
StepHypRef Expression
1 clmvsubval.v . . 3 𝑉 = (Base‘𝑊)
2 clmvsubval.p . . 3 + = (+g𝑊)
3 clmvsubval.m . . 3 = (-g𝑊)
4 clmvsubval.f . . 3 𝐹 = (Scalar‘𝑊)
5 clmvsubval.s . . 3 · = ( ·𝑠𝑊)
61, 2, 3, 4, 5clmvsubval 22909 . 2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
7 clmabl 22869 . . . 4 (𝑊 ∈ ℂMod → 𝑊 ∈ Abel)
873ad2ant1 1082 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ Abel)
9 simp2 1062 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
10 simpl 473 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → 𝑊 ∈ ℂMod)
11 eqid 2622 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
124, 11clmneg1 22882 . . . . . 6 (𝑊 ∈ ℂMod → -1 ∈ (Base‘𝐹))
1312adantr 481 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → -1 ∈ (Base‘𝐹))
14 simpr 477 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → 𝐵𝑉)
151, 4, 5, 11clmvscl 22888 . . . . 5 ((𝑊 ∈ ℂMod ∧ -1 ∈ (Base‘𝐹) ∧ 𝐵𝑉) → (-1 · 𝐵) ∈ 𝑉)
1610, 13, 14, 15syl3anc 1326 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (-1 · 𝐵) ∈ 𝑉)
17163adant2 1080 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (-1 · 𝐵) ∈ 𝑉)
181, 2ablcom 18210 . . 3 ((𝑊 ∈ Abel ∧ 𝐴𝑉 ∧ (-1 · 𝐵) ∈ 𝑉) → (𝐴 + (-1 · 𝐵)) = ((-1 · 𝐵) + 𝐴))
198, 9, 17, 18syl3anc 1326 . 2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + (-1 · 𝐵)) = ((-1 · 𝐵) + 𝐴))
206, 19eqtrd 2656 1 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = ((-1 · 𝐵) + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  1c1 9937  -cneg 10267  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945  -gcsg 17424  Abelcabl 18194  ℂModcclm 22862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-seq 12802  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-cnfld 19747  df-clm 22863
This theorem is referenced by:  clmvz  22911
  Copyright terms: Public domain W3C validator