Step | Hyp | Ref
| Expression |
1 | | clwwlksbij.d |
. . 3
⊢ 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ( lastS ‘𝑤) = (𝑤‘0)} |
2 | | clwwlksbij.f |
. . 3
⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡 substr 〈0, 𝑁〉)) |
3 | 1, 2 | clwwlksf 26915 |
. 2
⊢ (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺)) |
4 | | eqid 2622 |
. . . . . . . 8
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
5 | | eqid 2622 |
. . . . . . . 8
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
6 | 4, 5 | clwwlknp 26887 |
. . . . . . 7
⊢ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺))) |
7 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) |
8 | | simpl1 1064 |
. . . . . . . . . 10
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁)) |
9 | | 3simpc 1060 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺))) |
10 | 9 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺))) |
11 | 1 | clwwlksel 26914 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺))) → (𝑝 ++ 〈“(𝑝‘0)”〉) ∈ 𝐷) |
12 | 7, 8, 10, 11 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ++ 〈“(𝑝‘0)”〉) ∈ 𝐷) |
13 | | opeq2 4403 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 = (#‘𝑝) → 〈0, 𝑁〉 = 〈0, (#‘𝑝)〉) |
14 | 13 | eqcoms 2630 |
. . . . . . . . . . . . . 14
⊢
((#‘𝑝) = 𝑁 → 〈0, 𝑁〉 = 〈0, (#‘𝑝)〉) |
15 | 14 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢
((#‘𝑝) = 𝑁 → ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0, 𝑁〉) = ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0,
(#‘𝑝)〉)) |
16 | 15 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) → ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0, 𝑁〉) = ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0,
(#‘𝑝)〉)) |
17 | 16 | 3ad2ant1 1082 |
. . . . . . . . . . 11
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0, 𝑁〉) = ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0,
(#‘𝑝)〉)) |
18 | 17 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0, 𝑁〉) = ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0,
(#‘𝑝)〉)) |
19 | | simpll 790 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ Word (Vtx‘𝐺)) |
20 | | fstwrdne0 13345 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ (𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁)) → (𝑝‘0) ∈ (Vtx‘𝐺)) |
21 | 20 | ancoms 469 |
. . . . . . . . . . . . . 14
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑝‘0) ∈ (Vtx‘𝐺)) |
22 | 21 | s1cld 13383 |
. . . . . . . . . . . . 13
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → 〈“(𝑝‘0)”〉 ∈
Word (Vtx‘𝐺)) |
23 | 19, 22 | jca 554 |
. . . . . . . . . . . 12
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑝‘0)”〉 ∈ Word
(Vtx‘𝐺))) |
24 | 23 | 3ad2antl1 1223 |
. . . . . . . . . . 11
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑝‘0)”〉 ∈ Word
(Vtx‘𝐺))) |
25 | | swrdccat1 13457 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ Word (Vtx‘𝐺) ∧ 〈“(𝑝‘0)”〉 ∈
Word (Vtx‘𝐺)) →
((𝑝 ++ 〈“(𝑝‘0)”〉) substr
〈0, (#‘𝑝)〉)
= 𝑝) |
26 | 24, 25 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0,
(#‘𝑝)〉) = 𝑝) |
27 | 18, 26 | eqtr2d 2657 |
. . . . . . . . 9
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0, 𝑁〉)) |
28 | 12, 27 | jca 554 |
. . . . . . . 8
⊢ ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ 〈“(𝑝‘0)”〉) ∈ 𝐷 ∧ 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0, 𝑁〉))) |
29 | 28 | ex 450 |
. . . . . . 7
⊢ (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝‘𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → ((𝑝 ++ 〈“(𝑝‘0)”〉) ∈ 𝐷 ∧ 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0, 𝑁〉)))) |
30 | 6, 29 | syl 17 |
. . . . . 6
⊢ (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ ℕ → ((𝑝 ++ 〈“(𝑝‘0)”〉) ∈ 𝐷 ∧ 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0, 𝑁〉)))) |
31 | 30 | impcom 446 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑝 ++ 〈“(𝑝‘0)”〉) ∈ 𝐷 ∧ 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0, 𝑁〉))) |
32 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑥 = (𝑝 ++ 〈“(𝑝‘0)”〉) → (𝑥 substr 〈0, 𝑁〉) = ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0, 𝑁〉)) |
33 | 32 | eqeq2d 2632 |
. . . . . 6
⊢ (𝑥 = (𝑝 ++ 〈“(𝑝‘0)”〉) → (𝑝 = (𝑥 substr 〈0, 𝑁〉) ↔ 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0, 𝑁〉))) |
34 | 33 | rspcev 3309 |
. . . . 5
⊢ (((𝑝 ++ 〈“(𝑝‘0)”〉) ∈
𝐷 ∧ 𝑝 = ((𝑝 ++ 〈“(𝑝‘0)”〉) substr 〈0, 𝑁〉)) → ∃𝑥 ∈ 𝐷 𝑝 = (𝑥 substr 〈0, 𝑁〉)) |
35 | 31, 34 | syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥 ∈ 𝐷 𝑝 = (𝑥 substr 〈0, 𝑁〉)) |
36 | 1, 2 | clwwlksfv 26916 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (𝐹‘𝑥) = (𝑥 substr 〈0, 𝑁〉)) |
37 | 36 | eqeq2d 2632 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → (𝑝 = (𝐹‘𝑥) ↔ 𝑝 = (𝑥 substr 〈0, 𝑁〉))) |
38 | 37 | adantl 482 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) ∧ 𝑥 ∈ 𝐷) → (𝑝 = (𝐹‘𝑥) ↔ 𝑝 = (𝑥 substr 〈0, 𝑁〉))) |
39 | 38 | rexbidva 3049 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → (∃𝑥 ∈ 𝐷 𝑝 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐷 𝑝 = (𝑥 substr 〈0, 𝑁〉))) |
40 | 35, 39 | mpbird 247 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥 ∈ 𝐷 𝑝 = (𝐹‘𝑥)) |
41 | 40 | ralrimiva 2966 |
. 2
⊢ (𝑁 ∈ ℕ →
∀𝑝 ∈ (𝑁 ClWWalksN 𝐺)∃𝑥 ∈ 𝐷 𝑝 = (𝐹‘𝑥)) |
42 | | dffo3 6374 |
. 2
⊢ (𝐹:𝐷–onto→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑝 ∈ (𝑁 ClWWalksN 𝐺)∃𝑥 ∈ 𝐷 𝑝 = (𝐹‘𝑥))) |
43 | 3, 41, 42 | sylanbrc 698 |
1
⊢ (𝑁 ∈ ℕ → 𝐹:𝐷–onto→(𝑁 ClWWalksN 𝐺)) |