MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksf1 Structured version   Visualization version   GIF version

Theorem clwwlksf1 26917
Description: Lemma 3 for clwwlksbij 26920: F is a 1-1 function. (Contributed by AV, 28-Sep-2018.) (Revised by AV, 26-Apr-2021.)
Hypotheses
Ref Expression
clwwlksbij.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ( lastS ‘𝑤) = (𝑤‘0)}
clwwlksbij.f 𝐹 = (𝑡𝐷 ↦ (𝑡 substr ⟨0, 𝑁⟩))
Assertion
Ref Expression
clwwlksf1 (𝑁 ∈ ℕ → 𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑡,𝐷   𝑡,𝐺,𝑤   𝑡,𝑁
Allowed substitution hints:   𝐷(𝑤)   𝐹(𝑤,𝑡)

Proof of Theorem clwwlksf1
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwwlksbij.d . . 3 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ( lastS ‘𝑤) = (𝑤‘0)}
2 clwwlksbij.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡 substr ⟨0, 𝑁⟩))
31, 2clwwlksf 26915 . 2 (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺))
41, 2clwwlksfv 26916 . . . . . 6 (𝑥𝐷 → (𝐹𝑥) = (𝑥 substr ⟨0, 𝑁⟩))
51, 2clwwlksfv 26916 . . . . . 6 (𝑦𝐷 → (𝐹𝑦) = (𝑦 substr ⟨0, 𝑁⟩))
64, 5eqeqan12d 2638 . . . . 5 ((𝑥𝐷𝑦𝐷) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)))
76adantl 482 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)))
8 fveq2 6191 . . . . . . . . 9 (𝑤 = 𝑥 → ( lastS ‘𝑤) = ( lastS ‘𝑥))
9 fveq1 6190 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
108, 9eqeq12d 2637 . . . . . . . 8 (𝑤 = 𝑥 → (( lastS ‘𝑤) = (𝑤‘0) ↔ ( lastS ‘𝑥) = (𝑥‘0)))
1110, 1elrab2 3366 . . . . . . 7 (𝑥𝐷 ↔ (𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑥) = (𝑥‘0)))
12 fveq2 6191 . . . . . . . . 9 (𝑤 = 𝑦 → ( lastS ‘𝑤) = ( lastS ‘𝑦))
13 fveq1 6190 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
1412, 13eqeq12d 2637 . . . . . . . 8 (𝑤 = 𝑦 → (( lastS ‘𝑤) = (𝑤‘0) ↔ ( lastS ‘𝑦) = (𝑦‘0)))
1514, 1elrab2 3366 . . . . . . 7 (𝑦𝐷 ↔ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0)))
1611, 15anbi12i 733 . . . . . 6 ((𝑥𝐷𝑦𝐷) ↔ ((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0))))
17 eqid 2622 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
18 eqid 2622 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
1917, 18wwlknp 26734 . . . . . . . . 9 (𝑥 ∈ (𝑁 WWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑥𝑖), (𝑥‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2017, 18wwlknp 26734 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑁 WWalksN 𝐺) → (𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
21 simprlr 803 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (#‘𝑥) = (𝑁 + 1))
22 simpllr 799 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (#‘𝑦) = (𝑁 + 1))
2321, 22eqtr4d 2659 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (#‘𝑥) = (#‘𝑦))
2423ad2antlr 763 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → (#‘𝑥) = (#‘𝑦))
25 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
26 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℂ
27 pncan 10287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
2827eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → 𝑁 = ((𝑁 + 1) − 1))
2925, 26, 28sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 + 1) − 1))
30 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((#‘𝑥) = (𝑁 + 1) → ((#‘𝑥) − 1) = ((𝑁 + 1) − 1))
3130eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((#‘𝑥) = (𝑁 + 1) → ((𝑁 + 1) − 1) = ((#‘𝑥) − 1))
3229, 31sylan9eqr 2678 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((#‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → 𝑁 = ((#‘𝑥) − 1))
3332opeq2d 4409 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((#‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → ⟨0, 𝑁⟩ = ⟨0, ((#‘𝑥) − 1)⟩)
3433oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((#‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (𝑥 substr ⟨0, 𝑁⟩) = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩))
3533oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((#‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → (𝑦 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩))
3634, 35eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . 24 (((#‘𝑥) = (𝑁 + 1) ∧ 𝑁 ∈ ℕ) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩)))
3736ex 450 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩))))
3837ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩))))
3938adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩))))
4039impcom 446 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩)))
4140biimpa 501 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩))
42 simpll 790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → 𝑦 ∈ Word (Vtx‘𝐺))
43 simpll 790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → 𝑥 ∈ Word (Vtx‘𝐺))
4442, 43anim12ci 591 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)))
4544adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)))
46 nnnn0 11299 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
47 0nn0 11307 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℕ0
4846, 47jctil 560 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (0 ∈ ℕ0𝑁 ∈ ℕ0))
4948adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → (0 ∈ ℕ0𝑁 ∈ ℕ0))
50 nnre 11027 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5150lep1d 10955 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
52 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((#‘𝑥) = (𝑁 + 1) → (𝑁 ≤ (#‘𝑥) ↔ 𝑁 ≤ (𝑁 + 1)))
5351, 52syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((#‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑁 ≤ (#‘𝑥)))
5453ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → 𝑁 ≤ (#‘𝑥)))
5554adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 𝑁 ≤ (#‘𝑥)))
5655impcom 446 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → 𝑁 ≤ (#‘𝑥))
57 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((#‘𝑦) = (𝑁 + 1) → (𝑁 ≤ (#‘𝑦) ↔ 𝑁 ≤ (𝑁 + 1)))
5851, 57syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((#‘𝑦) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑁 ≤ (#‘𝑦)))
5958ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → 𝑁 ≤ (#‘𝑦)))
6059adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 𝑁 ≤ (#‘𝑦)))
6160impcom 446 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → 𝑁 ≤ (#‘𝑦))
62 swrdspsleq 13449 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺)) ∧ (0 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘𝑥) ∧ 𝑁 ≤ (#‘𝑦))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
6345, 49, 56, 61, 62syl112anc 1330 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) ↔ ∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖)))
64 lbfzo0 12507 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
6564biimpri 218 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 0 ∈ (0..^𝑁))
6665adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → 0 ∈ (0..^𝑁))
67 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 0 → (𝑥𝑖) = (𝑥‘0))
68 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 0 → (𝑦𝑖) = (𝑦‘0))
6967, 68eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 0 → ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑥‘0) = (𝑦‘0)))
7069rspcv 3305 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ (0..^𝑁) → (∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖) → (𝑥‘0) = (𝑦‘0)))
7166, 70syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → (∀𝑖 ∈ (0..^𝑁)(𝑥𝑖) = (𝑦𝑖) → (𝑥‘0) = (𝑦‘0)))
7263, 71sylbid 230 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → (𝑥‘0) = (𝑦‘0)))
7372imp 445 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → (𝑥‘0) = (𝑦‘0))
74 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → ( lastS ‘𝑥) = (𝑥‘0))
75 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → ( lastS ‘𝑦) = (𝑦‘0))
7674, 75eqeqan12rd 2640 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (( lastS ‘𝑥) = ( lastS ‘𝑦) ↔ (𝑥‘0) = (𝑦‘0)))
7776ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → (( lastS ‘𝑥) = ( lastS ‘𝑦) ↔ (𝑥‘0) = (𝑦‘0)))
7873, 77mpbird 247 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → ( lastS ‘𝑥) = ( lastS ‘𝑦))
7924, 41, 78jca32 558 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → ((#‘𝑥) = (#‘𝑦) ∧ ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩) ∧ ( lastS ‘𝑥) = ( lastS ‘𝑦))))
8043adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → 𝑥 ∈ Word (Vtx‘𝐺))
8180adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → 𝑥 ∈ Word (Vtx‘𝐺))
8242adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → 𝑦 ∈ Word (Vtx‘𝐺))
8382adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → 𝑦 ∈ Word (Vtx‘𝐺))
84 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 1 ∈ ℝ)
85 nngt0 11049 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 0 < 𝑁)
86 0lt1 10550 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 < 1
8786a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 0 < 1)
8850, 84, 85, 87addgt0d 10602 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
89 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑥) = (𝑁 + 1) → (0 < (#‘𝑥) ↔ 0 < (𝑁 + 1)))
9088, 89syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑥) = (𝑁 + 1) → (𝑁 ∈ ℕ → 0 < (#‘𝑥)))
9190ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → 0 < (#‘𝑥)))
9291adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → (𝑁 ∈ ℕ → 0 < (#‘𝑥)))
9392impcom 446 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → 0 < (#‘𝑥))
9481, 83, 933jca 1242 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (#‘𝑥)))
9594adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (#‘𝑥)))
96 2swrd1eqwrdeq 13454 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 0 < (#‘𝑥)) → (𝑥 = 𝑦 ↔ ((#‘𝑥) = (#‘𝑦) ∧ ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩) ∧ ( lastS ‘𝑥) = ( lastS ‘𝑦)))))
9795, 96syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → (𝑥 = 𝑦 ↔ ((#‘𝑥) = (#‘𝑦) ∧ ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) = (𝑦 substr ⟨0, ((#‘𝑥) − 1)⟩) ∧ ( lastS ‘𝑥) = ( lastS ‘𝑦)))))
9879, 97mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)))) ∧ (𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩)) → 𝑥 = 𝑦)
9998exp31 630 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) ∧ ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))
10099expdcom 455 . . . . . . . . . . . . . . 15 (((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦))))
101100ex 450 . . . . . . . . . . . . . 14 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1)) → (( lastS ‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))))
1021013adant3 1081 . . . . . . . . . . . . 13 ((𝑦 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (( lastS ‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))))
10320, 102syl 17 . . . . . . . . . . . 12 (𝑦 ∈ (𝑁 WWalksN 𝐺) → (( lastS ‘𝑦) = (𝑦‘0) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))))
104103imp 445 . . . . . . . . . . 11 ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) ∧ ( lastS ‘𝑥) = (𝑥‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦))))
105104expdcom 455 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1)) → (( lastS ‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))))
1061053adant3 1081 . . . . . . . . 9 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑥𝑖), (𝑥‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (( lastS ‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))))
10719, 106syl 17 . . . . . . . 8 (𝑥 ∈ (𝑁 WWalksN 𝐺) → (( lastS ‘𝑥) = (𝑥‘0) → ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0)) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))))
108107imp31 448 . . . . . . 7 (((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0))) → (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))
109108com12 32 . . . . . 6 (𝑁 ∈ ℕ → (((𝑥 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑥) = (𝑥‘0)) ∧ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘𝑦) = (𝑦‘0))) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))
11016, 109syl5bi 232 . . . . 5 (𝑁 ∈ ℕ → ((𝑥𝐷𝑦𝐷) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦)))
111110imp 445 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝑥 substr ⟨0, 𝑁⟩) = (𝑦 substr ⟨0, 𝑁⟩) → 𝑥 = 𝑦))
1127, 111sylbid 230 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥𝐷𝑦𝐷)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
113112ralrimivva 2971 . 2 (𝑁 ∈ ℕ → ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
114 dff13 6512 . 2 (𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑥𝐷𝑦𝐷 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
1153, 113, 114sylanbrc 698 1 (𝑁 ∈ ℕ → 𝐹:𝐷1-1→(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  {cpr 4179  cop 4183   class class class wbr 4653  cmpt 4729  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  ..^cfzo 12465  #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-s1 13302  df-substr 13303  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  clwwlksf1o  26919
  Copyright terms: Public domain W3C validator