| Step | Hyp | Ref
| Expression |
| 1 | | isclwwlksn 26882 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (#‘𝑊) = 𝑁))) |
| 2 | | eqid 2622 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 3 | | eqid 2622 |
. . . . . . 7
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 4 | 2, 3 | isclwwlks 26880 |
. . . . . 6
⊢ (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) |
| 5 | 4 | anbi1i 731 |
. . . . 5
⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (#‘𝑊) = 𝑁) ↔ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = 𝑁)) |
| 6 | 1, 5 | syl6bb 276 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = 𝑁))) |
| 7 | | idd 24 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word (Vtx‘𝐺))) |
| 8 | | idd 24 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ →
(∀𝑖 ∈
(0..^((#‘𝑊) −
1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 9 | | nncn 11028 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 10 | | npcan1 10455 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
| 12 | 11 | eqcomd 2628 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 𝑁 = ((𝑁 − 1) + 1)) |
| 13 | 12 | eqeq2d 2632 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ →
((#‘𝑊) = 𝑁 ↔ (#‘𝑊) = ((𝑁 − 1) + 1))) |
| 14 | 13 | biimpd 219 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ →
((#‘𝑊) = 𝑁 → (#‘𝑊) = ((𝑁 − 1) + 1))) |
| 15 | 7, 8, 14 | 3anim123d 1406 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = 𝑁) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = ((𝑁 − 1) + 1)))) |
| 16 | 15 | com12 32 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = 𝑁) → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = ((𝑁 − 1) + 1)))) |
| 17 | 16 | 3exp 1264 |
. . . . . . . 8
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((#‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = ((𝑁 − 1) + 1)))))) |
| 18 | 17 | a1dd 50 |
. . . . . . 7
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((#‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = ((𝑁 − 1) + 1))))))) |
| 19 | 18 | adantr 481 |
. . . . . 6
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((#‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = ((𝑁 − 1) + 1))))))) |
| 20 | 19 | 3imp1 1280 |
. . . . 5
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = 𝑁) → (𝑁 ∈ ℕ → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = ((𝑁 − 1) + 1)))) |
| 21 | 20 | com12 32 |
. . . 4
⊢ (𝑁 ∈ ℕ → ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (#‘𝑊) = 𝑁) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = ((𝑁 − 1) + 1)))) |
| 22 | 6, 21 | sylbid 230 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = ((𝑁 − 1) + 1)))) |
| 23 | 22 | imp 445 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = ((𝑁 − 1) + 1))) |
| 24 | | nnm1nn0 11334 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
| 25 | 2, 3 | iswwlksnx 26731 |
. . . 4
⊢ ((𝑁 − 1) ∈
ℕ0 → (𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = ((𝑁 − 1) + 1)))) |
| 26 | 24, 25 | syl 17 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = ((𝑁 − 1) + 1)))) |
| 27 | 26 | adantr 481 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (#‘𝑊) = ((𝑁 − 1) + 1)))) |
| 28 | 23, 27 | mpbird 247 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺)) |