![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > extwwlkfablem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for extwwlkfab 27223. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 28-May-2021.) (Proof shortened by AV, 24-Jan-2022.) |
Ref | Expression |
---|---|
extwwlkfablem2 | ⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤 substr 〈0, (𝑁 − 2)〉) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uz3m2nn 11731 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℕ) | |
2 | eluzelz 11697 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
3 | peano2zm 11420 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
4 | 1nn0 11308 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
5 | eluzmn 11694 | . . . . . . . 8 ⊢ (((𝑁 − 1) ∈ ℤ ∧ 1 ∈ ℕ0) → (𝑁 − 1) ∈ (ℤ≥‘((𝑁 − 1) − 1))) | |
6 | 3, 4, 5 | sylancl 694 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ (ℤ≥‘((𝑁 − 1) − 1))) |
7 | zcn 11382 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
8 | sub1m1 11284 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − 2)) | |
9 | 7, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) − 1) = (𝑁 − 2)) |
10 | 9 | eqcomd 2628 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 − 2) = ((𝑁 − 1) − 1)) |
11 | 10 | fveq2d 6195 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (ℤ≥‘(𝑁 − 2)) = (ℤ≥‘((𝑁 − 1) − 1))) |
12 | 6, 11 | eleqtrrd 2704 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2))) |
13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2))) |
14 | 1, 13 | jca 554 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2)))) |
15 | 14 | adantl 482 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2)))) |
16 | 15 | 3ad2ant1 1082 | . 2 ⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → ((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2)))) |
17 | eluzge3nn 11730 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | |
18 | 17 | adantl 482 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑁 ∈ ℕ) |
19 | 18 | anim1i 592 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑁 ∈ ℕ ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺))) |
20 | 19 | 3adant3 1081 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑁 ∈ ℕ ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺))) |
21 | clwwlksnwwlksn 27209 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ ((𝑁 − 1) WWalksN 𝐺)) | |
22 | 20, 21 | syl 17 | . 2 ⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → 𝑤 ∈ ((𝑁 − 1) WWalksN 𝐺)) |
23 | simp3 1063 | . 2 ⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤‘(𝑁 − 2)) = (𝑤‘0)) | |
24 | clwwlkinwwlk 26905 | . 2 ⊢ ((((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2))) ∧ 𝑤 ∈ ((𝑁 − 1) WWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤 substr 〈0, (𝑁 − 2)〉) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) | |
25 | 16, 22, 23, 24 | syl3anc 1326 | 1 ⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ 𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) → (𝑤 substr 〈0, (𝑁 − 2)〉) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 〈cop 4183 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 0cc0 9936 1c1 9937 − cmin 10266 ℕcn 11020 2c2 11070 3c3 11071 ℕ0cn0 11292 ℤcz 11377 ℤ≥cuz 11687 substr csubstr 13295 USGraph cusgr 26044 WWalksN cwwlksn 26718 ClWWalksN cclwwlksn 26876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-lsw 13300 df-substr 13303 df-wwlks 26722 df-wwlksn 26723 df-clwwlks 26877 df-clwwlksn 26878 |
This theorem is referenced by: extwwlkfab 27223 |
Copyright terms: Public domain | W3C validator |