| Step | Hyp | Ref
| Expression |
| 1 | | ax-resscn 9993 |
. . . . 5
⊢ ℝ
⊆ ℂ |
| 2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 3 | | dvcj.f |
. . . 4
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| 4 | | dvcj.x |
. . . 4
⊢ (𝜑 → 𝑋 ⊆ ℝ) |
| 5 | | eqid 2622 |
. . . . 5
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 6 | 5 | tgioo2 22606 |
. . . 4
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 7 | 2, 3, 4, 6, 5 | dvbssntr 23664 |
. . 3
⊢ (𝜑 → dom (ℝ D 𝐹) ⊆
((int‘(topGen‘ran (,)))‘𝑋)) |
| 8 | | dvcj.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ dom (ℝ D 𝐹)) |
| 9 | 7, 8 | sseldd 3604 |
. 2
⊢ (𝜑 → 𝐶 ∈ ((int‘(topGen‘ran
(,)))‘𝑋)) |
| 10 | 4, 1 | syl6ss 3615 |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 11 | 1 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ℝ ⊆
ℂ) |
| 12 | | simpl 473 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ) |
| 13 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ) |
| 14 | 11, 12, 13 | dvbss 23665 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
𝐹) ⊆ 𝑋) |
| 15 | 3, 4, 14 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → dom (ℝ D 𝐹) ⊆ 𝑋) |
| 16 | 15, 8 | sseldd 3604 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| 17 | 3, 10, 16 | dvlem 23660 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)) ∈ ℂ) |
| 18 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) |
| 19 | 17, 18 | fmptd 6385 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))):(𝑋 ∖ {𝐶})⟶ℂ) |
| 20 | | ssid 3624 |
. . . . 5
⊢ ℂ
⊆ ℂ |
| 21 | 20 | a1i 11 |
. . . 4
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 22 | 5 | cnfldtopon 22586 |
. . . . . 6
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 23 | 22 | toponunii 20721 |
. . . . . . 7
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
| 24 | 23 | restid 16094 |
. . . . . 6
⊢
((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
→ ((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
| 25 | 22, 24 | ax-mp 5 |
. . . . 5
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
| 26 | 25 | eqcomi 2631 |
. . . 4
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
| 27 | | dvf 23671 |
. . . . . . . 8
⊢ (ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℂ |
| 28 | | ffun 6048 |
. . . . . . . 8
⊢ ((ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun
(ℝ D 𝐹)) |
| 29 | | funfvbrb 6330 |
. . . . . . . 8
⊢ (Fun
(ℝ D 𝐹) → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))) |
| 30 | 27, 28, 29 | mp2b 10 |
. . . . . . 7
⊢ (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)) |
| 31 | 8, 30 | sylib 208 |
. . . . . 6
⊢ (𝜑 → 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)) |
| 32 | 6, 5, 18, 2, 3, 4 | eldv 23662 |
. . . . . 6
⊢ (𝜑 → (𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘(topGen‘ran
(,)))‘𝑋) ∧
((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) limℂ 𝐶)))) |
| 33 | 31, 32 | mpbid 222 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ ((int‘(topGen‘ran
(,)))‘𝑋) ∧
((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) limℂ 𝐶))) |
| 34 | 33 | simprd 479 |
. . . 4
⊢ (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) limℂ 𝐶)) |
| 35 | | cjcncf 22707 |
. . . . . 6
⊢ ∗
∈ (ℂ–cn→ℂ) |
| 36 | 5 | cncfcn1 22713 |
. . . . . 6
⊢
(ℂ–cn→ℂ) =
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) |
| 37 | 35, 36 | eleqtri 2699 |
. . . . 5
⊢ ∗
∈ ((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) |
| 38 | 27 | ffvelrni 6358 |
. . . . . 6
⊢ (𝐶 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝐶) ∈ ℂ) |
| 39 | 8, 38 | syl 17 |
. . . . 5
⊢ (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ℂ) |
| 40 | 23 | cncnpi 21082 |
. . . . 5
⊢
((∗ ∈ ((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ℂ) → ∗ ∈
(((TopOpen‘ℂfld) CnP
(TopOpen‘ℂfld))‘((ℝ D 𝐹)‘𝐶))) |
| 41 | 37, 39, 40 | sylancr 695 |
. . . 4
⊢ (𝜑 → ∗ ∈
(((TopOpen‘ℂfld) CnP
(TopOpen‘ℂfld))‘((ℝ D 𝐹)‘𝐶))) |
| 42 | 19, 21, 5, 26, 34, 41 | limccnp 23655 |
. . 3
⊢ (𝜑 → (∗‘((ℝ
D 𝐹)‘𝐶)) ∈ ((∗ ∘
(𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)))) limℂ 𝐶)) |
| 43 | | eqidd 2623 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)))) |
| 44 | | cjf 13844 |
. . . . . . . 8
⊢
∗:ℂ⟶ℂ |
| 45 | 44 | a1i 11 |
. . . . . . 7
⊢ (𝜑 →
∗:ℂ⟶ℂ) |
| 46 | 45 | feqmptd 6249 |
. . . . . 6
⊢ (𝜑 → ∗ = (𝑦 ∈ ℂ ↦
(∗‘𝑦))) |
| 47 | | fveq2 6191 |
. . . . . 6
⊢ (𝑦 = (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)) → (∗‘𝑦) = (∗‘(((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)))) |
| 48 | 17, 43, 46, 47 | fmptco 6396 |
. . . . 5
⊢ (𝜑 → (∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (∗‘(((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))))) |
| 49 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐹:𝑋⟶ℂ) |
| 50 | | eldifi 3732 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑋 ∖ {𝐶}) → 𝑥 ∈ 𝑋) |
| 51 | 50 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ 𝑋) |
| 52 | 49, 51 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝐹‘𝑥) ∈ ℂ) |
| 53 | 3, 16 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝐶) ∈ ℂ) |
| 54 | 53 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝐹‘𝐶) ∈ ℂ) |
| 55 | 52, 54 | subcld 10392 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → ((𝐹‘𝑥) − (𝐹‘𝐶)) ∈ ℂ) |
| 56 | 4 | sselda 3603 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℝ) |
| 57 | 50, 56 | sylan2 491 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ ℝ) |
| 58 | 4, 16 | sseldd 3604 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 59 | 58 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℝ) |
| 60 | 57, 59 | resubcld 10458 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥 − 𝐶) ∈ ℝ) |
| 61 | 60 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥 − 𝐶) ∈ ℂ) |
| 62 | 57 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ ℂ) |
| 63 | 59 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℂ) |
| 64 | | eldifsni 4320 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑋 ∖ {𝐶}) → 𝑥 ≠ 𝐶) |
| 65 | 64 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ≠ 𝐶) |
| 66 | 62, 63, 65 | subne0d 10401 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥 − 𝐶) ≠ 0) |
| 67 | 55, 61, 66 | cjdivd 13963 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) = ((∗‘((𝐹‘𝑥) − (𝐹‘𝐶))) / (∗‘(𝑥 − 𝐶)))) |
| 68 | | cjsub 13889 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ (𝐹‘𝐶) ∈ ℂ) →
(∗‘((𝐹‘𝑥) − (𝐹‘𝐶))) = ((∗‘(𝐹‘𝑥)) − (∗‘(𝐹‘𝐶)))) |
| 69 | 52, 54, 68 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘((𝐹‘𝑥) − (𝐹‘𝐶))) = ((∗‘(𝐹‘𝑥)) − (∗‘(𝐹‘𝐶)))) |
| 70 | | fvco3 6275 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑥 ∈ 𝑋) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹‘𝑥))) |
| 71 | 3, 50, 70 | syl2an 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹‘𝑥))) |
| 72 | | fvco3 6275 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝐶 ∈ 𝑋) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹‘𝐶))) |
| 73 | 3, 16, 72 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹‘𝐶))) |
| 74 | 73 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹‘𝐶))) |
| 75 | 71, 74 | oveq12d 6668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) = ((∗‘(𝐹‘𝑥)) − (∗‘(𝐹‘𝐶)))) |
| 76 | 69, 75 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘((𝐹‘𝑥) − (𝐹‘𝐶))) = (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶))) |
| 77 | 60 | cjred 13966 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(𝑥 − 𝐶)) = (𝑥 − 𝐶)) |
| 78 | 76, 77 | oveq12d 6668 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗‘((𝐹‘𝑥) − (𝐹‘𝐶))) / (∗‘(𝑥 − 𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) |
| 79 | 67, 78 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) |
| 80 | 79 | mpteq2dva 4744 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (∗‘(((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶)))) |
| 81 | 48, 80 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → (∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶)))) |
| 82 | 81 | oveq1d 6665 |
. . 3
⊢ (𝜑 → ((∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑥) − (𝐹‘𝐶)) / (𝑥 − 𝐶)))) limℂ 𝐶) = ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) limℂ 𝐶)) |
| 83 | 42, 82 | eleqtrd 2703 |
. 2
⊢ (𝜑 → (∗‘((ℝ
D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) limℂ 𝐶)) |
| 84 | | eqid 2622 |
. . 3
⊢ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) |
| 85 | | fco 6058 |
. . . 4
⊢
((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘
𝐹):𝑋⟶ℂ) |
| 86 | 44, 3, 85 | sylancr 695 |
. . 3
⊢ (𝜑 → (∗ ∘ 𝐹):𝑋⟶ℂ) |
| 87 | 6, 5, 84, 2, 86, 4 | eldv 23662 |
. 2
⊢ (𝜑 → (𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝐶)) ↔ (𝐶 ∈ ((int‘(topGen‘ran
(,)))‘𝑋) ∧
(∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥 − 𝐶))) limℂ 𝐶)))) |
| 88 | 9, 83, 87 | mpbir2and 957 |
1
⊢ (𝜑 → 𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝐶))) |