MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercn Structured version   Visualization version   GIF version

Theorem psercn 24180
Description: An infinite series converges to a continuous function on the open disk of radius 𝑅, where 𝑅 is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
psercn (𝜑𝐹 ∈ (𝑆cn→ℂ))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercn
Dummy variables 𝑘 𝑠 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumex 14418 . . . . . 6 Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ V
21rgenw 2924 . . . . 5 𝑦𝑆 Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ V
3 pserf.f . . . . . 6 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
43fnmpt 6020 . . . . 5 (∀𝑦𝑆 Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗) ∈ V → 𝐹 Fn 𝑆)
52, 4mp1i 13 . . . 4 (𝜑𝐹 Fn 𝑆)
6 psercn.s . . . . . . . . . . 11 𝑆 = (abs “ (0[,)𝑅))
7 cnvimass 5485 . . . . . . . . . . . 12 (abs “ (0[,)𝑅)) ⊆ dom abs
8 absf 14077 . . . . . . . . . . . . 13 abs:ℂ⟶ℝ
98fdmi 6052 . . . . . . . . . . . 12 dom abs = ℂ
107, 9sseqtri 3637 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ ℂ
116, 10eqsstri 3635 . . . . . . . . . 10 𝑆 ⊆ ℂ
1211a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
1312sselda 3603 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
14 0cn 10032 . . . . . . . . . . 11 0 ∈ ℂ
15 eqid 2622 . . . . . . . . . . . 12 (abs ∘ − ) = (abs ∘ − )
1615cnmetdval 22574 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
1714, 13, 16sylancr 695 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
18 abssub 14066 . . . . . . . . . . 11 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (abs‘(0 − 𝑎)) = (abs‘(𝑎 − 0)))
1914, 13, 18sylancr 695 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘(0 − 𝑎)) = (abs‘(𝑎 − 0)))
2013subid1d 10381 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 − 0) = 𝑎)
2120fveq2d 6195 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘(𝑎 − 0)) = (abs‘𝑎))
2217, 19, 213eqtrd 2660 . . . . . . . . 9 ((𝜑𝑎𝑆) → (0(abs ∘ − )𝑎) = (abs‘𝑎))
23 breq2 4657 . . . . . . . . . . 11 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
24 breq2 4657 . . . . . . . . . . 11 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < ((abs‘𝑎) + 1) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
25 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎𝑆) → 𝑎𝑆)
2625, 6syl6eleq 2711 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑅)))
27 ffn 6045 . . . . . . . . . . . . . . . . . 18 (abs:ℂ⟶ℝ → abs Fn ℂ)
28 elpreima 6337 . . . . . . . . . . . . . . . . . 18 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅))))
298, 27, 28mp2b 10 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3026, 29sylib 208 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3130simprd 479 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑅))
32 0re 10040 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
33 iccssxr 12256 . . . . . . . . . . . . . . . . 17 (0[,]+∞) ⊆ ℝ*
34 pserf.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
35 pserf.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴:ℕ0⟶ℂ)
36 pserf.r . . . . . . . . . . . . . . . . . . 19 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3734, 35, 36radcnvcl 24171 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ (0[,]+∞))
3837adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3933, 38sseldi 3601 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
40 elico2 12237 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4132, 39, 40sylancr 695 . . . . . . . . . . . . . . 15 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4231, 41mpbid 222 . . . . . . . . . . . . . 14 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅))
4342simp3d 1075 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑅)
4443adantr 481 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < 𝑅)
4513abscld 14175 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
46 avglt1 11270 . . . . . . . . . . . . 13 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4745, 46sylan 488 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4844, 47mpbid 222 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2))
4945ltp1d 10954 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 1))
5049adantr 481 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → (abs‘𝑎) < ((abs‘𝑎) + 1))
5123, 24, 48, 50ifbothda 4123 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)))
52 psercn.m . . . . . . . . . 10 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
5351, 52syl6breqr 4695 . . . . . . . . 9 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
5422, 53eqbrtrd 4675 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(abs ∘ − )𝑎) < 𝑀)
55 cnxmet 22576 . . . . . . . . . 10 (abs ∘ − ) ∈ (∞Met‘ℂ)
5655a1i 11 . . . . . . . . 9 ((𝜑𝑎𝑆) → (abs ∘ − ) ∈ (∞Met‘ℂ))
5714a1i 11 . . . . . . . . 9 ((𝜑𝑎𝑆) → 0 ∈ ℂ)
5834, 3, 35, 36, 6, 52psercnlem1 24179 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
5958simp1d 1073 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
6059rpxrd 11873 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
61 elbl 22193 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ*) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ↔ (𝑎 ∈ ℂ ∧ (0(abs ∘ − )𝑎) < 𝑀)))
6256, 57, 60, 61syl3anc 1326 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ↔ (𝑎 ∈ ℂ ∧ (0(abs ∘ − )𝑎) < 𝑀)))
6313, 54, 62mpbir2and 957 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀))
64 fvres 6207 . . . . . . 7 (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) → ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀))‘𝑎) = (𝐹𝑎))
6563, 64syl 17 . . . . . 6 ((𝜑𝑎𝑆) → ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀))‘𝑎) = (𝐹𝑎))
663reseq1i 5392 . . . . . . . . . 10 (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) = ((𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) ↾ (0(ball‘(abs ∘ − ))𝑀))
6734, 3, 35, 36, 6, 58psercnlem2 24178 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → (𝑎 ∈ (0(ball‘(abs ∘ − ))𝑀) ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)) ∧ (abs “ (0[,]𝑀)) ⊆ 𝑆))
6867simp2d 1074 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ (abs “ (0[,]𝑀)))
6967simp3d 1075 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → (abs “ (0[,]𝑀)) ⊆ 𝑆)
7068, 69sstrd 3613 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆)
7170resmptd 5452 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) ↾ (0(ball‘(abs ∘ − ))𝑀)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)))
7266, 71syl5eq 2668 . . . . . . . . 9 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)))
73 eqid 2622 . . . . . . . . . 10 (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
7435adantr 481 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝐴:ℕ0⟶ℂ)
75 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑘 = 𝑦 → (𝐺𝑘) = (𝐺𝑦))
7675seqeq3d 12809 . . . . . . . . . . . . . 14 (𝑘 = 𝑦 → seq0( + , (𝐺𝑘)) = seq0( + , (𝐺𝑦)))
7776fveq1d 6193 . . . . . . . . . . . . 13 (𝑘 = 𝑦 → (seq0( + , (𝐺𝑘))‘𝑠) = (seq0( + , (𝐺𝑦))‘𝑠))
7877cbvmptv 4750 . . . . . . . . . . . 12 (𝑘 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑘))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑠))
79 fveq2 6191 . . . . . . . . . . . . 13 (𝑠 = 𝑖 → (seq0( + , (𝐺𝑦))‘𝑠) = (seq0( + , (𝐺𝑦))‘𝑖))
8079mpteq2dv 4745 . . . . . . . . . . . 12 (𝑠 = 𝑖 → (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
8178, 80syl5eq 2668 . . . . . . . . . . 11 (𝑠 = 𝑖 → (𝑘 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑘))‘𝑠)) = (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
8281cbvmptv 4750 . . . . . . . . . 10 (𝑠 ∈ ℕ0 ↦ (𝑘 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑘))‘𝑠))) = (𝑖 ∈ ℕ0 ↦ (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ (seq0( + , (𝐺𝑦))‘𝑖)))
8359rpred 11872 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
8458simp3d 1075 . . . . . . . . . 10 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
8534, 73, 74, 36, 82, 83, 84, 68psercn2 24177 . . . . . . . . 9 ((𝜑𝑎𝑆) → (𝑦 ∈ (0(ball‘(abs ∘ − ))𝑀) ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗)) ∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ))
8672, 85eqeltrd 2701 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ))
87 cncff 22696 . . . . . . . 8 ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)):(0(ball‘(abs ∘ − ))𝑀)⟶ℂ)
8886, 87syl 17 . . . . . . 7 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)):(0(ball‘(abs ∘ − ))𝑀)⟶ℂ)
8988, 63ffvelrnd 6360 . . . . . 6 ((𝜑𝑎𝑆) → ((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀))‘𝑎) ∈ ℂ)
9065, 89eqeltrrd 2702 . . . . 5 ((𝜑𝑎𝑆) → (𝐹𝑎) ∈ ℂ)
9190ralrimiva 2966 . . . 4 (𝜑 → ∀𝑎𝑆 (𝐹𝑎) ∈ ℂ)
92 ffnfv 6388 . . . 4 (𝐹:𝑆⟶ℂ ↔ (𝐹 Fn 𝑆 ∧ ∀𝑎𝑆 (𝐹𝑎) ∈ ℂ))
935, 91, 92sylanbrc 698 . . 3 (𝜑𝐹:𝑆⟶ℂ)
9470, 11syl6ss 3615 . . . . . . . . 9 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ)
95 ssid 3624 . . . . . . . . 9 ℂ ⊆ ℂ
96 eqid 2622 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
97 eqid 2622 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀))
9896cnfldtop 22587 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Top
9996cnfldtopon 22586 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
10099toponunii 20721 . . . . . . . . . . . . 13 ℂ = (TopOpen‘ℂfld)
101100restid 16094 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
10298, 101ax-mp 5 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
103102eqcomi 2631 . . . . . . . . . 10 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
10496, 97, 103cncfcn 22712 . . . . . . . . 9 (((0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)))
10594, 95, 104sylancl 694 . . . . . . . 8 ((𝜑𝑎𝑆) → ((0(ball‘(abs ∘ − ))𝑀)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)))
10686, 105eleqtrd 2703 . . . . . . 7 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)))
107100restuni 20966 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ ℂ) → (0(ball‘(abs ∘ − ))𝑀) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
10898, 94, 107sylancr 695 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
10963, 108eleqtrd 2703 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
110 eqid 2622 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀))
111110cncnpi 21082 . . . . . . 7 (((𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) Cn (TopOpen‘ℂfld)) ∧ 𝑎 ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀))) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
112106, 109, 111syl2anc 693 . . . . . 6 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ ((((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
11398a1i 11 . . . . . . . . 9 ((𝜑𝑎𝑆) → (TopOpen‘ℂfld) ∈ Top)
114 cnex 10017 . . . . . . . . . . 11 ℂ ∈ V
115114, 11ssexi 4803 . . . . . . . . . 10 𝑆 ∈ V
116115a1i 11 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑆 ∈ V)
117 restabs 20969 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆𝑆 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
118113, 70, 116, 117syl3anc 1326 . . . . . . . 8 ((𝜑𝑎𝑆) → (((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) = ((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)))
119118oveq1d 6665 . . . . . . 7 ((𝜑𝑎𝑆) → ((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld)))
120119fveq1d 6193 . . . . . 6 ((𝜑𝑎𝑆) → (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎) = ((((TopOpen‘ℂfld) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
121112, 120eleqtrrd 2704 . . . . 5 ((𝜑𝑎𝑆) → (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎))
122 resttop 20964 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
12398, 115, 122mp2an 708 . . . . . . 7 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top
124123a1i 11 . . . . . 6 ((𝜑𝑎𝑆) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top)
125 df-ss 3588 . . . . . . . . . 10 ((0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆 ↔ ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) = (0(ball‘(abs ∘ − ))𝑀))
12670, 125sylib 208 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) = (0(ball‘(abs ∘ − ))𝑀))
12796cnfldtopn 22585 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
128127blopn 22305 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑀 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑀) ∈ (TopOpen‘ℂfld))
12956, 57, 60, 128syl3anc 1326 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ∈ (TopOpen‘ℂfld))
130 elrestr 16089 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ V ∧ (0(ball‘(abs ∘ − ))𝑀) ∈ (TopOpen‘ℂfld)) → ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
131113, 116, 129, 130syl3anc 1326 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((0(ball‘(abs ∘ − ))𝑀) ∩ 𝑆) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
132126, 131eqeltrrd 2702 . . . . . . . 8 ((𝜑𝑎𝑆) → (0(ball‘(abs ∘ − ))𝑀) ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
133 isopn3i 20886 . . . . . . . 8 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
134123, 132, 133sylancr 695 . . . . . . 7 ((𝜑𝑎𝑆) → ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)) = (0(ball‘(abs ∘ − ))𝑀))
13563, 134eleqtrrd 2704 . . . . . 6 ((𝜑𝑎𝑆) → 𝑎 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)))
13693adantr 481 . . . . . 6 ((𝜑𝑎𝑆) → 𝐹:𝑆⟶ℂ)
137100restuni 20966 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
13898, 11, 137mp2an 708 . . . . . . 7 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆)
139138, 100cnprest 21093 . . . . . 6 (((((TopOpen‘ℂfld) ↾t 𝑆) ∈ Top ∧ (0(ball‘(abs ∘ − ))𝑀) ⊆ 𝑆) ∧ (𝑎 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑆))‘(0(ball‘(abs ∘ − ))𝑀)) ∧ 𝐹:𝑆⟶ℂ)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎) ↔ (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎)))
140124, 70, 135, 136, 139syl22anc 1327 . . . . 5 ((𝜑𝑎𝑆) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎) ↔ (𝐹 ↾ (0(ball‘(abs ∘ − ))𝑀)) ∈ (((((TopOpen‘ℂfld) ↾t 𝑆) ↾t (0(ball‘(abs ∘ − ))𝑀)) CnP (TopOpen‘ℂfld))‘𝑎)))
141121, 140mpbird 247 . . . 4 ((𝜑𝑎𝑆) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎))
142141ralrimiva 2966 . . 3 (𝜑 → ∀𝑎𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎))
143 resttopon 20965 . . . . 5 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
14499, 11, 143mp2an 708 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆)
145 cncnp 21084 . . . 4 ((((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑎𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎))))
146144, 99, 145mp2an 708 . . 3 (𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝐹:𝑆⟶ℂ ∧ ∀𝑎𝑆 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘𝑎)))
14793, 142, 146sylanbrc 698 . 2 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
148 eqid 2622 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
14996, 148, 103cncfcn 22712 . . 3 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
15011, 95, 149mp2an 708 . 2 (𝑆cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld))
151147, 150syl6eleqr 2712 1 (𝜑𝐹 ∈ (𝑆cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cin 3573  wss 3574  ifcif 4086   cuni 4436   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  cres 5116  cima 5117  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  supcsup 8346  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  0cn0 11292  +crp 11832  [,)cico 12177  [,]cicc 12178  seqcseq 12801  cexp 12860  abscabs 13974  cli 14215  Σcsu 14416  t crest 16081  TopOpenctopn 16082  ∞Metcxmt 19731  ballcbl 19733  fldccnfld 19746  Topctop 20698  TopOnctopon 20715  intcnt 20821   Cn ccn 21028   CnP ccnp 21029  cnccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-ntr 20824  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ulm 24131
This theorem is referenced by:  pserdvlem2  24182  pserdv  24183  abelth  24195  logtayl  24406
  Copyright terms: Public domain W3C validator