| Step | Hyp | Ref
| Expression |
| 1 | | taylth.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 2 | | taylth.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| 3 | | 1eluzge0 11732 |
. . . . . . . . . . . 12
⊢ 1 ∈
(ℤ≥‘0) |
| 4 | | fzss1 12380 |
. . . . . . . . . . . 12
⊢ (1 ∈
(ℤ≥‘0) → (1...𝑁) ⊆ (0...𝑁)) |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
(0...𝑁) |
| 6 | | taylthlem2.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (1..^𝑁)) |
| 7 | | fzofzp1 12565 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (1..^𝑁) → (𝑀 + 1) ∈ (1...𝑁)) |
| 8 | 6, 7 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 + 1) ∈ (1...𝑁)) |
| 9 | 5, 8 | sseldi 3601 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ (0...𝑁)) |
| 10 | | fznn0sub2 12446 |
. . . . . . . . . 10
⊢ ((𝑀 + 1) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 − (𝑀 + 1)) ∈ (0...𝑁)) |
| 12 | | elfznn0 12433 |
. . . . . . . . 9
⊢ ((𝑁 − (𝑀 + 1)) ∈ (0...𝑁) → (𝑁 − (𝑀 + 1)) ∈
ℕ0) |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 − (𝑀 + 1)) ∈
ℕ0) |
| 14 | | dvnfre 23715 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ) |
| 15 | 2, 1, 13, 14 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ) |
| 16 | | reelprrecn 10028 |
. . . . . . . . . . . 12
⊢ ℝ
∈ {ℝ, ℂ} |
| 17 | 16 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 18 | | cnex 10017 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
| 19 | 18 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ∈
V) |
| 20 | | reex 10027 |
. . . . . . . . . . . . 13
⊢ ℝ
∈ V |
| 21 | 20 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ∈
V) |
| 22 | | ax-resscn 9993 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
| 23 | | fss 6056 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:𝐴⟶ℂ) |
| 24 | 2, 22, 23 | sylancl 694 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 25 | | elpm2r 7875 |
. . . . . . . . . . . 12
⊢
(((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
| 26 | 19, 21, 24, 1, 25 | syl22anc 1327 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
| 27 | | dvnbss 23691 |
. . . . . . . . . . 11
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
(𝑀 + 1)) ∈
ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹) |
| 28 | 17, 26, 13, 27 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ dom 𝐹) |
| 29 | | fdm 6051 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴) |
| 30 | 2, 29 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 31 | 28, 30 | sseqtrd 3641 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ⊆ 𝐴) |
| 32 | | taylth.d |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) = 𝐴) |
| 33 | | dvn2bss 23693 |
. . . . . . . . . . 11
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
(𝑀 + 1)) ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) |
| 34 | 17, 26, 11, 33 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) |
| 35 | 32, 34 | eqsstr3d 3640 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))) |
| 36 | 31, 35 | eqssd 3620 |
. . . . . . . 8
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = 𝐴) |
| 37 | 36 | feq2d 6031 |
. . . . . . 7
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):dom ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ)) |
| 38 | 15, 37 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ) |
| 39 | 38 | ffvelrnda 6359 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
| 40 | 1 | sselda 3603 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 41 | | fvres 6207 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ →
((((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) |
| 42 | 41 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) = (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) |
| 43 | | resubdrg 19954 |
. . . . . . . . . . . 12
⊢ (ℝ
∈ (SubRing‘ℂfld) ∧ ℝfld ∈
DivRing) |
| 44 | 43 | simpli 474 |
. . . . . . . . . . 11
⊢ ℝ
∈ (SubRing‘ℂfld) |
| 45 | 44 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈
(SubRing‘ℂfld)) |
| 46 | | taylth.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 47 | 46 | nnnn0d 11351 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 48 | | taylth.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| 49 | 48, 32 | eleqtrrd 2704 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑁)) |
| 50 | | taylth.t |
. . . . . . . . . . . 12
⊢ 𝑇 = (𝑁(ℝ Tayl 𝐹)𝐵) |
| 51 | 1, 48 | sseldd 3604 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 52 | 2 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐹:𝐴⟶ℝ) |
| 53 | 1 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ⊆ ℝ) |
| 54 | | elfznn0 12433 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 55 | 54 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 56 | | dvnfre 23715 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ 𝑘 ∈ ℕ0) → ((ℝ
D𝑛 𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ) |
| 57 | 52, 53, 55, 56 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((ℝ D𝑛
𝐹)‘𝑘):dom ((ℝ D𝑛 𝐹)‘𝑘)⟶ℝ) |
| 58 | 16 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ℝ ∈ {ℝ,
ℂ}) |
| 59 | 26 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
| 60 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁)) |
| 61 | | dvn2bss 23693 |
. . . . . . . . . . . . . . . 16
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ 𝑘 ∈
(0...𝑁)) → dom
((ℝ D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘𝑘)) |
| 62 | 58, 59, 60, 61 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘𝑘)) |
| 63 | 49 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑁)) |
| 64 | 62, 63 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ dom ((ℝ D𝑛
𝐹)‘𝑘)) |
| 65 | 57, 64 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((ℝ D𝑛
𝐹)‘𝑘)‘𝐵) ∈ ℝ) |
| 66 | | faccl 13070 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
| 67 | 55, 66 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ) |
| 68 | 65, 67 | nndivred 11069 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((((ℝ D𝑛
𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) ∈ ℝ) |
| 69 | 17, 24, 1, 47, 49, 50, 45, 51, 68 | taylply2 24122 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑇 ∈ (Poly‘ℝ) ∧
(deg‘𝑇) ≤ 𝑁)) |
| 70 | 69 | simpld 475 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈
(Poly‘ℝ)) |
| 71 | | dvnply2 24042 |
. . . . . . . . . 10
⊢ ((ℝ
∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈
(Poly‘ℝ)) |
| 72 | 45, 70, 13, 71 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈
(Poly‘ℝ)) |
| 73 | | plyreres 24038 |
. . . . . . . . 9
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾
ℝ):ℝ⟶ℝ) |
| 74 | 72, 73 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾
ℝ):ℝ⟶ℝ) |
| 75 | 74 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ↾ ℝ)‘𝑦) ∈
ℝ) |
| 76 | 42, 75 | eqeltrrd 2702 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
| 77 | 40, 76 | syldan 487 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℝ) |
| 78 | 39, 77 | resubcld 10458 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ ℝ) |
| 79 | | eqid 2622 |
. . . 4
⊢ (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
| 80 | 78, 79 | fmptd 6385 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))):𝐴⟶ℝ) |
| 81 | 51 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 82 | 40, 81 | resubcld 10458 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑦 − 𝐵) ∈ ℝ) |
| 83 | | elfzouz 12474 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (1..^𝑁) → 𝑀 ∈
(ℤ≥‘1)) |
| 84 | 6, 83 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
| 85 | | nnuz 11723 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 86 | 84, 85 | syl6eleqr 2712 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 87 | 86 | nnnn0d 11351 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 88 | 87 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑀 ∈
ℕ0) |
| 89 | | 1nn0 11308 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
| 90 | 89 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 1 ∈
ℕ0) |
| 91 | 88, 90 | nn0addcld 11355 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑀 + 1) ∈
ℕ0) |
| 92 | 82, 91 | reexpcld 13025 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℝ) |
| 93 | | eqid 2622 |
. . . 4
⊢ (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) = (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 94 | 92, 93 | fmptd 6385 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℝ) |
| 95 | | retop 22565 |
. . . . . 6
⊢
(topGen‘ran (,)) ∈ Top |
| 96 | | uniretop 22566 |
. . . . . . 7
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 97 | 96 | ntrss2 20861 |
. . . . . 6
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) →
((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
| 98 | 95, 1, 97 | sylancr 695 |
. . . . 5
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝐴) ⊆ 𝐴) |
| 99 | 46 | nncnd 11036 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 100 | 86 | nncnd 11036 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 101 | | 1cnd 10056 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℂ) |
| 102 | 99, 100, 101 | nppcan2d 10418 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑁 − (𝑀 + 1)) + 1) = (𝑁 − 𝑀)) |
| 103 | 102 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
| 104 | 22 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 105 | | dvnp1 23688 |
. . . . . . . . . 10
⊢ ((ℝ
⊆ ℂ ∧ 𝐹
∈ (ℂ ↑pm ℝ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
| 106 | 104, 26, 13, 105 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
| 107 | 103, 106 | eqtr3d 2658 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
| 108 | 107 | dmeqd 5326 |
. . . . . . 7
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))))) |
| 109 | | fzonnsub 12493 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (1..^𝑁) → (𝑁 − 𝑀) ∈ ℕ) |
| 110 | 6, 109 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℕ) |
| 111 | 110 | nnnn0d 11351 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 𝑀) ∈
ℕ0) |
| 112 | | dvnbss 23691 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈
ℕ0) → dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ dom 𝐹) |
| 113 | 17, 26, 111, 112 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ dom 𝐹) |
| 114 | 113, 30 | sseqtrd 3641 |
. . . . . . . 8
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) ⊆ 𝐴) |
| 115 | | elfzofz 12485 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (1..^𝑁) → 𝑀 ∈ (1...𝑁)) |
| 116 | 6, 115 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
| 117 | 5, 116 | sseldi 3601 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
| 118 | | fznn0sub2 12446 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝑁) → (𝑁 − 𝑀) ∈ (0...𝑁)) |
| 119 | 117, 118 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 − 𝑀) ∈ (0...𝑁)) |
| 120 | | dvn2bss 23693 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈ (0...𝑁)) → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
| 121 | 17, 26, 119, 120 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘𝑁) ⊆ dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))) |
| 122 | 32, 121 | eqsstr3d 3640 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ dom ((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))) |
| 123 | 114, 122 | eqssd 3620 |
. . . . . . 7
⊢ (𝜑 → dom ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = 𝐴) |
| 124 | 108, 123 | eqtr3d 2658 |
. . . . . 6
⊢ (𝜑 → dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) |
| 125 | | fss 6056 |
. . . . . . . 8
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ) |
| 126 | 38, 22, 125 | sylancl 694 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ) |
| 127 | | eqid 2622 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 128 | 127 | tgioo2 22606 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 129 | 104, 126,
1, 128, 127 | dvbssntr 23664 |
. . . . . 6
⊢ (𝜑 → dom (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) ⊆
((int‘(topGen‘ran (,)))‘𝐴)) |
| 130 | 124, 129 | eqsstr3d 3640 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ((int‘(topGen‘ran
(,)))‘𝐴)) |
| 131 | 98, 130 | eqssd 3620 |
. . . 4
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴) |
| 132 | 96 | isopn3 20870 |
. . . . 5
⊢
(((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)) |
| 133 | 95, 1, 132 | sylancr 695 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)) |
| 134 | 131, 133 | mpbird 247 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (topGen‘ran
(,))) |
| 135 | | eqid 2622 |
. . 3
⊢ (𝐴 ∖ {𝐵}) = (𝐴 ∖ {𝐵}) |
| 136 | | difss 3737 |
. . . 4
⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 |
| 137 | 39 | recnd 10068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
| 138 | | dvnf 23690 |
. . . . . . . . . 10
⊢ ((ℝ
∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm
ℝ) ∧ (𝑁 −
𝑀) ∈
ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ) |
| 139 | 17, 26, 111, 138 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ) |
| 140 | 123 | feq2d 6031 |
. . . . . . . . 9
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℂ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℂ)) |
| 141 | 139, 140 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℂ) |
| 142 | 141 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
| 143 | | dvnfre 23715 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ ∧ (𝑁 − 𝑀) ∈ ℕ0) →
((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ) |
| 144 | 2, 1, 111, 143 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ) |
| 145 | 123 | feq2d 6031 |
. . . . . . . . . 10
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):dom ((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))⟶ℝ ↔ ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℝ)) |
| 146 | 144, 145 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)):𝐴⟶ℝ) |
| 147 | 146 | feqmptd 6249 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀)) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦))) |
| 148 | 38 | feqmptd 6249 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
| 149 | 148 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) |
| 150 | 107, 147,
149 | 3eqtr3rd 2665 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦))) |
| 151 | 77 | recnd 10068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
| 152 | | fvexd 6203 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ V) |
| 153 | 76 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
| 154 | | recn 10026 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
| 155 | | dvnply2 24042 |
. . . . . . . . . . . 12
⊢ ((ℝ
∈ (SubRing‘ℂfld) ∧ 𝑇 ∈ (Poly‘ℝ) ∧ (𝑁 − 𝑀) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈
(Poly‘ℝ)) |
| 156 | 45, 70, 111, 155 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈
(Poly‘ℝ)) |
| 157 | | plyf 23954 |
. . . . . . . . . . 11
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀)):ℂ⟶ℂ) |
| 158 | 156, 157 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)):ℂ⟶ℂ) |
| 159 | 158 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
| 160 | 154, 159 | sylan2 491 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦) ∈ ℂ) |
| 161 | 127 | cnfldtopon 22586 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 162 | | toponmax 20730 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
→ ℂ ∈ (TopOpen‘ℂfld)) |
| 163 | 161, 162 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → ℂ ∈
(TopOpen‘ℂfld)) |
| 164 | | df-ss 3588 |
. . . . . . . . . 10
⊢ (ℝ
⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) |
| 165 | 104, 164 | sylib 208 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ ∩ ℂ) =
ℝ) |
| 166 | | plyf 23954 |
. . . . . . . . . . 11
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 +
1))):ℂ⟶ℂ) |
| 167 | 72, 166 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 +
1))):ℂ⟶ℂ) |
| 168 | 167 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) ∈ ℂ) |
| 169 | 102 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))) |
| 170 | | ssid 3624 |
. . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ |
| 171 | 170 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 172 | | mapsspm 7891 |
. . . . . . . . . . . . 13
⊢ (ℂ
↑𝑚 ℂ) ⊆ (ℂ ↑pm
ℂ) |
| 173 | | plyf 23954 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 ∈ (Poly‘ℝ)
→ 𝑇:ℂ⟶ℂ) |
| 174 | 70, 173 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇:ℂ⟶ℂ) |
| 175 | 18, 18 | elmap 7886 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ∈ (ℂ
↑𝑚 ℂ) ↔ 𝑇:ℂ⟶ℂ) |
| 176 | 174, 175 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ (ℂ ↑𝑚
ℂ)) |
| 177 | 172, 176 | sseldi 3601 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ∈ (ℂ ↑pm
ℂ)) |
| 178 | | dvnp1 23688 |
. . . . . . . . . . . 12
⊢ ((ℂ
⊆ ℂ ∧ 𝑇
∈ (ℂ ↑pm ℂ) ∧ (𝑁 − (𝑀 + 1)) ∈ ℕ0) →
((ℂ D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
| 179 | 171, 177,
13, 178 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘((𝑁 − (𝑀 + 1)) + 1)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
| 180 | 169, 179 | eqtr3d 2658 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) = (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))))) |
| 181 | 158 | feqmptd 6249 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀)) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
| 182 | 167 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) |
| 183 | 182 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))) = (ℂ D (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) |
| 184 | 180, 181,
183 | 3eqtr3rd 2665 |
. . . . . . . . 9
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℂ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
| 185 | 127, 17, 163, 165, 168, 159, 184 | dvmptres3 23719 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ ℝ ↦ (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
| 186 | 17, 153, 160, 185, 1, 128, 127, 134 | dvmptres 23726 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
| 187 | 17, 137, 142, 150, 151, 152, 186 | dvmptsub 23730 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))) |
| 188 | 187 | dmeqd 5326 |
. . . . 5
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = dom (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))) |
| 189 | | ovex 6678 |
. . . . . 6
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)) ∈ V |
| 190 | | eqid 2622 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) = (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) |
| 191 | 189, 190 | dmmpti 6023 |
. . . . 5
⊢ dom
(𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦))) = 𝐴 |
| 192 | 188, 191 | syl6eq 2672 |
. . . 4
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))) = 𝐴) |
| 193 | 136, 192 | syl5sseqr 3654 |
. . 3
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))) |
| 194 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) |
| 195 | 51 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐵 ∈ ℝ) |
| 196 | 195 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐵 ∈ ℂ) |
| 197 | 194, 196 | subcld 10392 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦 − 𝐵) ∈ ℂ) |
| 198 | 87 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑀 ∈
ℕ0) |
| 199 | 89 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℕ0) |
| 200 | 198, 199 | nn0addcld 11355 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑀 + 1) ∈
ℕ0) |
| 201 | 197, 200 | expcld 13008 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
| 202 | 154, 201 | sylan2 491 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
| 203 | 100 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑀 ∈ ℂ) |
| 204 | | 1cnd 10056 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 1 ∈
ℂ) |
| 205 | 203, 204 | addcld 10059 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑀 + 1) ∈ ℂ) |
| 206 | 197, 198 | expcld 13008 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑦 − 𝐵)↑𝑀) ∈ ℂ) |
| 207 | 205, 206 | mulcld 10060 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ ℂ) |
| 208 | 154, 207 | sylan2 491 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ ℂ) |
| 209 | 18 | prid2 4298 |
. . . . . . . . . . 11
⊢ ℂ
∈ {ℝ, ℂ} |
| 210 | 209 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℂ ∈ {ℝ,
ℂ}) |
| 211 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) |
| 212 | | elfznn 12370 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 + 1) ∈ (1...𝑁) → (𝑀 + 1) ∈ ℕ) |
| 213 | 8, 212 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
| 214 | 213 | nnnn0d 11351 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) |
| 215 | 214 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑀 + 1) ∈
ℕ0) |
| 216 | 211, 215 | expcld 13008 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑀 + 1)) ∈ ℂ) |
| 217 | | ovexd 6680 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝑀 + 1) · (𝑥↑𝑀)) ∈ V) |
| 218 | 210 | dvmptid 23720 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1)) |
| 219 | | 0cnd 10033 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 0 ∈
ℂ) |
| 220 | 51 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 221 | 210, 220 | dvmptc 23721 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ 𝐵)) = (𝑦 ∈ ℂ ↦ 0)) |
| 222 | 210, 194,
204, 218, 196, 219, 221 | dvmptsub 23730 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦 − 𝐵))) = (𝑦 ∈ ℂ ↦ (1 −
0))) |
| 223 | | 1m0e1 11131 |
. . . . . . . . . . . 12
⊢ (1
− 0) = 1 |
| 224 | 223 | mpteq2i 4741 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℂ ↦ (1
− 0)) = (𝑦 ∈
ℂ ↦ 1) |
| 225 | 222, 224 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦 − 𝐵))) = (𝑦 ∈ ℂ ↦ 1)) |
| 226 | | dvexp 23716 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 1) ∈ ℕ →
(ℂ D (𝑥 ∈
ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))))) |
| 227 | 213, 226 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))))) |
| 228 | 100, 101 | pncand 10393 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
| 229 | 228 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥↑((𝑀 + 1) − 1)) = (𝑥↑𝑀)) |
| 230 | 229 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1))) = ((𝑀 + 1) · (𝑥↑𝑀))) |
| 231 | 230 | mpteq2dv 4745 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑((𝑀 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑𝑀)))) |
| 232 | 227, 231 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑀 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑀 + 1) · (𝑥↑𝑀)))) |
| 233 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − 𝐵) → (𝑥↑(𝑀 + 1)) = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 234 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 − 𝐵) → (𝑥↑𝑀) = ((𝑦 − 𝐵)↑𝑀)) |
| 235 | 234 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − 𝐵) → ((𝑀 + 1) · (𝑥↑𝑀)) = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 236 | 210, 210,
197, 204, 216, 217, 225, 232, 233, 235 | dvmptco 23735 |
. . . . . . . . 9
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1))) |
| 237 | 207 | mulid1d 10057 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1) = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 238 | 237 | mpteq2dva 4744 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ (((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) · 1)) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 239 | 236, 238 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℂ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 240 | 127, 17, 163, 165, 201, 207, 239 | dvmptres3 23719 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ ℝ ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 241 | 17, 202, 208, 240, 1, 128, 127, 134 | dvmptres 23726 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 242 | 241 | dmeqd 5326 |
. . . . 5
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = dom (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 243 | | ovex 6678 |
. . . . . 6
⊢ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ∈ V |
| 244 | | eqid 2622 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) = (𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 245 | 243, 244 | dmmpti 6023 |
. . . . 5
⊢ dom
(𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) = 𝐴 |
| 246 | 242, 245 | syl6eq 2672 |
. . . 4
⊢ (𝜑 → dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = 𝐴) |
| 247 | 136, 246 | syl5sseqr 3654 |
. . 3
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ dom (ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))) |
| 248 | 17, 24, 1, 11, 49, 50 | dvntaylp0 24126 |
. . . . . 6
⊢ (𝜑 → (((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
| 249 | 248 | oveq2d 6666 |
. . . . 5
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵))) |
| 250 | 126, 48 | ffvelrnd 6360 |
. . . . . 6
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) ∈ ℂ) |
| 251 | 250 | subidd 10380 |
. . . . 5
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0) |
| 252 | 249, 251 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) = 0) |
| 253 | 127 | subcn 22669 |
. . . . . . 7
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 254 | 253 | a1i 11 |
. . . . . 6
⊢ (𝜑 → − ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 255 | | dvcn 23684 |
. . . . . . . 8
⊢
(((ℝ ⊆ ℂ ∧ ((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D
((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))) = 𝐴) → ((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
| 256 | 104, 126,
1, 124, 255 | syl31anc 1329 |
. . . . . . 7
⊢ (𝜑 → ((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
| 257 | 148, 256 | eqeltrrd 2702 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴–cn→ℂ)) |
| 258 | | plycn 24017 |
. . . . . . . 8
⊢
(((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (Poly‘ℝ) →
((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ)) |
| 259 | 72, 258 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((ℂ
D𝑛 𝑇)‘(𝑁 − (𝑀 + 1))) ∈ (ℂ–cn→ℂ)) |
| 260 | 1, 22 | syl6ss 3615 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 261 | | cncfmptid 22715 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑦
∈ 𝐴 ↦ 𝑦) ∈ (𝐴–cn→ℂ)) |
| 262 | 260, 170,
261 | sylancl 694 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ 𝑦) ∈ (𝐴–cn→ℂ)) |
| 263 | 259, 262 | cncfmpt1f 22716 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) ∈ (𝐴–cn→ℂ)) |
| 264 | 127, 254,
257, 263 | cncfmpt2f 22717 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) ∈ (𝐴–cn→ℂ)) |
| 265 | | fveq2 6191 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
| 266 | | fveq2 6191 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) |
| 267 | 265, 266 | oveq12d 6668 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵))) |
| 268 | 264, 48, 267 | cnmptlimc 23654 |
. . . 4
⊢ (𝜑 → ((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝐵) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝐵)) ∈ ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) limℂ 𝐵)) |
| 269 | 252, 268 | eqeltrrd 2702 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))) limℂ 𝐵)) |
| 270 | 220 | subidd 10380 |
. . . . . 6
⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
| 271 | 270 | oveq1d 6665 |
. . . . 5
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) = (0↑(𝑀 + 1))) |
| 272 | 213 | 0expd 13024 |
. . . . 5
⊢ (𝜑 → (0↑(𝑀 + 1)) = 0) |
| 273 | 271, 272 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) = 0) |
| 274 | 260 | sselda 3603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℂ) |
| 275 | 274, 201 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ ℂ) |
| 276 | 275, 93 | fmptd 6385 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℂ) |
| 277 | | dvcn 23684 |
. . . . . 6
⊢
(((ℝ ⊆ ℂ ∧ (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))):𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ dom (ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) = 𝐴) → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
| 278 | 104, 276,
1, 246, 277 | syl31anc 1329 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ∈ (𝐴–cn→ℂ)) |
| 279 | | oveq1 6657 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝑦 − 𝐵) = (𝐵 − 𝐵)) |
| 280 | 279 | oveq1d 6665 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝑦 − 𝐵)↑(𝑀 + 1)) = ((𝐵 − 𝐵)↑(𝑀 + 1))) |
| 281 | 278, 48, 280 | cnmptlimc 23654 |
. . . 4
⊢ (𝜑 → ((𝐵 − 𝐵)↑(𝑀 + 1)) ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) limℂ 𝐵)) |
| 282 | 273, 281 | eqeltrrd 2702 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) limℂ 𝐵)) |
| 283 | 260 | ssdifssd 3748 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
| 284 | 283 | sselda 3603 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ∈ ℂ) |
| 285 | 220 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) |
| 286 | 284, 285 | subcld 10392 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦 − 𝐵) ∈ ℂ) |
| 287 | | eldifsni 4320 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐴 ∖ {𝐵}) → 𝑦 ≠ 𝐵) |
| 288 | 287 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑦 ≠ 𝐵) |
| 289 | 284, 285,
288 | subne0d 10401 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑦 − 𝐵) ≠ 0) |
| 290 | 213 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ) |
| 291 | 290 | nnzd 11481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℤ) |
| 292 | 286, 289,
291 | expne0d 13014 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑(𝑀 + 1)) ≠ 0) |
| 293 | 292 | necomd 2849 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 294 | 293 | neneqd 2799 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 295 | 294 | nrexdv 3001 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 296 | | df-ima 5127 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) |
| 297 | 296 | eleq2i 2693 |
. . . . 5
⊢ (0 ∈
((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵}))) |
| 298 | | resmpt 5449 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) |
| 299 | 136, 298 | ax-mp 5 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 300 | | ovex 6678 |
. . . . . 6
⊢ ((𝑦 − 𝐵)↑(𝑀 + 1)) ∈ V |
| 301 | 299, 300 | elrnmpti 5376 |
. . . . 5
⊢ (0 ∈
ran ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 302 | 297, 301 | bitri 264 |
. . . 4
⊢ (0 ∈
((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑦 − 𝐵)↑(𝑀 + 1))) |
| 303 | 295, 302 | sylnibr 319 |
. . 3
⊢ (𝜑 → ¬ 0 ∈ ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))) “ (𝐴 ∖ {𝐵}))) |
| 304 | 100 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℂ) |
| 305 | | 1cnd 10056 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 1 ∈
ℂ) |
| 306 | 304, 305 | addcld 10059 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ) |
| 307 | 284, 206 | syldan 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑𝑀) ∈ ℂ) |
| 308 | 290 | nnne0d 11065 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0) |
| 309 | 86 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℕ) |
| 310 | 309 | nnzd 11481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ) |
| 311 | 286, 289,
310 | expne0d 13014 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 − 𝐵)↑𝑀) ≠ 0) |
| 312 | 306, 307,
308, 311 | mulne0d 10679 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) ≠ 0) |
| 313 | 312 | necomd 2849 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → 0 ≠ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 314 | 313 | neneqd 2799 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ∖ {𝐵})) → ¬ 0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 315 | 314 | nrexdv 3001 |
. . . 4
⊢ (𝜑 → ¬ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 316 | 241 | imaeq1d 5465 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵}))) |
| 317 | | df-ima 5127 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) |
| 318 | 316, 317 | syl6eq 2672 |
. . . . . 6
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) = ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵}))) |
| 319 | 318 | eleq2d 2687 |
. . . . 5
⊢ (𝜑 → (0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ 0 ∈ ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})))) |
| 320 | | resmpt 5449 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 321 | 136, 320 | ax-mp 5 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) = (𝑦 ∈ (𝐴 ∖ {𝐵}) ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 322 | 321, 243 | elrnmpti 5376 |
. . . . 5
⊢ (0 ∈
ran ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) ↾ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀))) |
| 323 | 319, 322 | syl6bb 276 |
. . . 4
⊢ (𝜑 → (0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵})) ↔ ∃𝑦 ∈ (𝐴 ∖ {𝐵})0 = ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))) |
| 324 | 315, 323 | mtbird 315 |
. . 3
⊢ (𝜑 → ¬ 0 ∈ ((ℝ D
(𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))) “ (𝐴 ∖ {𝐵}))) |
| 325 | | eldifi 3732 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ 𝐴) |
| 326 | 141 | ffvelrnda 6359 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
| 327 | 325, 326 | sylan2 491 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
| 328 | 1 | ssdifssd 3748 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℝ) |
| 329 | 328 | sselda 3603 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℝ) |
| 330 | 329 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ ℂ) |
| 331 | 158 | ffvelrnda 6359 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((ℂ
D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
| 332 | 330, 331 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥) ∈ ℂ) |
| 333 | 327, 332 | subcld 10392 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) ∈ ℂ) |
| 334 | 51 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℝ) |
| 335 | 329, 334 | resubcld 10458 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ∈ ℝ) |
| 336 | 87 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈
ℕ0) |
| 337 | 335, 336 | reexpcld 13025 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ∈ ℝ) |
| 338 | 337 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ∈ ℂ) |
| 339 | 334 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐵 ∈ ℂ) |
| 340 | 330, 339 | subcld 10392 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ∈ ℂ) |
| 341 | | eldifsni 4320 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ≠ 𝐵) |
| 342 | 341 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ≠ 𝐵) |
| 343 | 330, 339,
342 | subne0d 10401 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑥 − 𝐵) ≠ 0) |
| 344 | 336 | nn0zd 11480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑀 ∈ ℤ) |
| 345 | 340, 343,
344 | expne0d 13014 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑥 − 𝐵)↑𝑀) ≠ 0) |
| 346 | 333, 338,
345 | divcld 10801 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) ∈ ℂ) |
| 347 | 213 | nnrecred 11066 |
. . . . . . 7
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ) |
| 348 | 347 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ℂ) |
| 349 | 348 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (1 / (𝑀 + 1)) ∈ ℂ) |
| 350 | | txtopon 21394 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
→ ((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ))) |
| 351 | 161, 161,
350 | mp2an 708 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ)) |
| 352 | 351 | toponunii 20721 |
. . . . . . . 8
⊢ (ℂ
× ℂ) = ∪
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) |
| 353 | 352 | restid 16094 |
. . . . . . 7
⊢
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ∈ (TopOn‘(ℂ ×
ℂ)) → (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
ℂ)) = ((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld))) |
| 354 | 351, 353 | ax-mp 5 |
. . . . . 6
⊢
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
ℂ)) = ((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) |
| 355 | 354 | eqcomi 2631 |
. . . . 5
⊢
((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) =
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) ↾t (ℂ ×
ℂ)) |
| 356 | | taylthlem2.i |
. . . . 5
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀))) limℂ 𝐵)) |
| 357 | | limcresi 23649 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵) ⊆ (((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) |
| 358 | | resmpt 5449 |
. . . . . . . . 9
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1)))) |
| 359 | 136, 358 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) |
| 360 | 359 | oveq1i 6660 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵) |
| 361 | 357, 360 | sseqtri 3637 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵) ⊆ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵) |
| 362 | | cncfmptc 22714 |
. . . . . . . 8
⊢ (((1 /
(𝑀 + 1)) ∈ ℝ
∧ 𝐴 ⊆ ℂ
∧ ℝ ⊆ ℂ) → (𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴–cn→ℝ)) |
| 363 | 347, 260,
104, 362 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) ∈ (𝐴–cn→ℝ)) |
| 364 | | eqidd 2623 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (1 / (𝑀 + 1)) = (1 / (𝑀 + 1))) |
| 365 | 363, 48, 364 | cnmptlimc 23654 |
. . . . . 6
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ 𝐴 ↦ (1 / (𝑀 + 1))) limℂ 𝐵)) |
| 366 | 361, 365 | sseldi 3601 |
. . . . 5
⊢ (𝜑 → (1 / (𝑀 + 1)) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (1 / (𝑀 + 1))) limℂ 𝐵)) |
| 367 | 127 | mulcn 22670 |
. . . . . 6
⊢ ·
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 368 | | 0cn 10032 |
. . . . . . 7
⊢ 0 ∈
ℂ |
| 369 | | opelxpi 5148 |
. . . . . . 7
⊢ ((0
∈ ℂ ∧ (1 / (𝑀 + 1)) ∈ ℂ) → 〈0, (1 /
(𝑀 + 1))〉 ∈
(ℂ × ℂ)) |
| 370 | 368, 348,
369 | sylancr 695 |
. . . . . 6
⊢ (𝜑 → 〈0, (1 / (𝑀 + 1))〉 ∈ (ℂ
× ℂ)) |
| 371 | 352 | cncnpi 21082 |
. . . . . 6
⊢ ((
· ∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) ∧ 〈0, (1 / (𝑀 + 1))〉 ∈ (ℂ ×
ℂ)) → · ∈ ((((TopOpen‘ℂfld)
×t (TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈0, (1 / (𝑀 + 1))〉)) |
| 372 | 367, 370,
371 | sylancr 695 |
. . . . 5
⊢ (𝜑 → · ∈
((((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) CnP
(TopOpen‘ℂfld))‘〈0, (1 / (𝑀 + 1))〉)) |
| 373 | 346, 349,
171, 171, 127, 355, 356, 366, 372 | limccnp2 23656 |
. . . 4
⊢ (𝜑 → (0 · (1 / (𝑀 + 1))) ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) limℂ 𝐵)) |
| 374 | 348 | mul02d 10234 |
. . . 4
⊢ (𝜑 → (0 · (1 / (𝑀 + 1))) = 0) |
| 375 | 187 | fveq1d 6193 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥)) |
| 376 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥)) |
| 377 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − 𝑀))‘𝑥)) |
| 378 | 376, 377 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
| 379 | | ovex 6678 |
. . . . . . . . . . 11
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) ∈ V |
| 380 | 378, 190,
379 | fvmpt 6282 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
| 381 | 325, 380 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
| 382 | 375, 381 | sylan9eq 2676 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥))) |
| 383 | 241 | fveq1d 6193 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥)) |
| 384 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝑦 − 𝐵) = (𝑥 − 𝐵)) |
| 385 | 384 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑𝑀) = ((𝑥 − 𝐵)↑𝑀)) |
| 386 | 385 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
| 387 | | ovex 6678 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀)) ∈ V |
| 388 | 386, 244,
387 | fvmpt 6282 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
| 389 | 325, 388 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) → ((𝑦 ∈ 𝐴 ↦ ((𝑀 + 1) · ((𝑦 − 𝐵)↑𝑀)))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
| 390 | 383, 389 | sylan9eq 2676 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀))) |
| 391 | 213 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℕ) |
| 392 | 391 | nncnd 11036 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ∈ ℂ) |
| 393 | 392, 338 | mulcomd 10061 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑀 + 1) · ((𝑥 − 𝐵)↑𝑀)) = (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1))) |
| 394 | 390, 393 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥) = (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1))) |
| 395 | 382, 394 | oveq12d 6668 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1)))) |
| 396 | 391 | nnne0d 11065 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (𝑀 + 1) ≠ 0) |
| 397 | 333, 338,
392, 345, 396 | divdiv1d 10832 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) / (𝑀 + 1)) = (((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / (((𝑥 − 𝐵)↑𝑀) · (𝑀 + 1)))) |
| 398 | 346, 392,
396 | divrecd 10804 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) / (𝑀 + 1)) = ((((((ℝ D𝑛
𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) |
| 399 | 395, 397,
398 | 3eqtr2rd 2663 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1))) = (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) |
| 400 | 399 | mpteq2dva 4744 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥)))) |
| 401 | 400 | oveq1d 6665 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ ((((((ℝ
D𝑛 𝐹)‘(𝑁 − 𝑀))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − 𝑀))‘𝑥)) / ((𝑥 − 𝐵)↑𝑀)) · (1 / (𝑀 + 1)))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) limℂ 𝐵)) |
| 402 | 373, 374,
401 | 3eltr3d 2715 |
. . 3
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((ℝ D (𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦))))‘𝑥) / ((ℝ D (𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1))))‘𝑥))) limℂ 𝐵)) |
| 403 | 1, 80, 94, 134, 48, 135, 193, 247, 269, 282, 303, 324, 402 | lhop 23779 |
. 2
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) limℂ 𝐵)) |
| 404 | 325 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ 𝐴) |
| 405 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥)) |
| 406 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦) = (((ℂ D𝑛 𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) |
| 407 | 405, 406 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
| 408 | | ovex 6678 |
. . . . . . 7
⊢
((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) ∈ V |
| 409 | 407, 79, 408 | fvmpt 6282 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
| 410 | 404, 409 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) = ((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥))) |
| 411 | 384 | oveq1d 6665 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((𝑦 − 𝐵)↑(𝑀 + 1)) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
| 412 | | ovex 6678 |
. . . . . . 7
⊢ ((𝑥 − 𝐵)↑(𝑀 + 1)) ∈ V |
| 413 | 411, 93, 412 | fvmpt 6282 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
| 414 | 404, 413 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥) = ((𝑥 − 𝐵)↑(𝑀 + 1))) |
| 415 | 410, 414 | oveq12d 6668 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝐵})) → (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥)) = (((((ℝ D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) |
| 416 | 415 | mpteq2dva 4744 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) = (𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1))))) |
| 417 | 416 | oveq1d 6665 |
. 2
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((𝑦 ∈ 𝐴 ↦ ((((ℝ D𝑛
𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑦) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑦)))‘𝑥) / ((𝑦 ∈ 𝐴 ↦ ((𝑦 − 𝐵)↑(𝑀 + 1)))‘𝑥))) limℂ 𝐵) = ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) |
| 418 | 403, 417 | eleqtrd 2703 |
1
⊢ (𝜑 → 0 ∈ ((𝑥 ∈ (𝐴 ∖ {𝐵}) ↦ (((((ℝ
D𝑛 𝐹)‘(𝑁 − (𝑀 + 1)))‘𝑥) − (((ℂ D𝑛
𝑇)‘(𝑁 − (𝑀 + 1)))‘𝑥)) / ((𝑥 − 𝐵)↑(𝑀 + 1)))) limℂ 𝐵)) |