Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnc Structured version   Visualization version   GIF version

Theorem ftc1cnnc 33484
Description: Choice-free proof of ftc1cn 23806. (Contributed by Brendan Leahy, 20-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cnnc.a (𝜑𝐴 ∈ ℝ)
ftc1cnnc.b (𝜑𝐵 ∈ ℝ)
ftc1cnnc.le (𝜑𝐴𝐵)
ftc1cnnc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cnnc.i (𝜑𝐹 ∈ 𝐿1)
Assertion
Ref Expression
ftc1cnnc (𝜑 → (ℝ D 𝐺) = 𝐹)
Distinct variable groups:   𝑥,𝑡,𝐴   𝑥,𝐵,𝑡   𝑥,𝐹,𝑡   𝜑,𝑥,𝑡
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1cnnc
Dummy variables 𝑦 𝑧 𝑠 𝑢 𝑣 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvf 23671 . . . . 5 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
21a1i 11 . . . 4 (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ)
3 ffun 6048 . . . 4 ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ → Fun (ℝ D 𝐺))
42, 3syl 17 . . 3 (𝜑 → Fun (ℝ D 𝐺))
5 ax-resscn 9993 . . . . . . 7 ℝ ⊆ ℂ
65a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
7 ftc1cnnc.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
8 ftc1cnnc.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9 ftc1cnnc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
10 ftc1cnnc.le . . . . . . 7 (𝜑𝐴𝐵)
11 ssid 3624 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)
1211a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
13 ioossre 12235 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
1413a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
15 ftc1cnnc.i . . . . . . 7 (𝜑𝐹 ∈ 𝐿1)
16 ftc1cnnc.f . . . . . . . 8 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
17 cncff 22696 . . . . . . . 8 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
1816, 17syl 17 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
197, 8, 9, 10, 12, 14, 15, 18ftc1lem2 23799 . . . . . 6 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
20 iccssre 12255 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
218, 9, 20syl2anc 693 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
22 eqid 2622 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2322tgioo2 22606 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
246, 19, 21, 23, 22dvbssntr 23664 . . . . 5 (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
25 iccntr 22624 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
268, 9, 25syl2anc 693 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2724, 26sseqtrd 3641 . . . 4 (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵))
28 retop 22565 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ Top
2923, 28eqeltrri 2698 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℝ) ∈ Top
3029a1i 11 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t ℝ) ∈ Top)
3121adantr 481 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
32 iooretop 22569 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
3332, 23eleqtri 2699 . . . . . . . . . . 11 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
3433a1i 11 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
35 ioossicc 12259 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3635a1i 11 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
37 uniretop 22566 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
3823unieqi 4445 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3937, 38eqtri 2644 . . . . . . . . . . 11 ℝ = ((TopOpen‘ℂfld) ↾t ℝ)
4039ssntr 20862 . . . . . . . . . 10 (((((TopOpen‘ℂfld) ↾t ℝ) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ) ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
4130, 31, 34, 36, 40syl22anc 1327 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
42 simpr 477 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴(,)𝐵))
4341, 42sseldd 3604 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
4418ffvelrnda 6359 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
45 cnxmet 22576 . . . . . . . . . . . . . 14 (abs ∘ − ) ∈ (∞Met‘ℂ)
4613, 5sstri 3612 . . . . . . . . . . . . . 14 (𝐴(,)𝐵) ⊆ ℂ
47 xmetres2 22166 . . . . . . . . . . . . . 14 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)))
4845, 46, 47mp2an 708 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵))
4948a1i 11 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)))
5045a1i 11 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
51 ssid 3624 . . . . . . . . . . . . . . . . 17 ℂ ⊆ ℂ
52 eqid 2622 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
5322cnfldtop 22587 . . . . . . . . . . . . . . . . . . . 20 (TopOpen‘ℂfld) ∈ Top
5422cnfldtopon 22586 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
5554toponunii 20721 . . . . . . . . . . . . . . . . . . . . 21 ℂ = (TopOpen‘ℂfld)
5655restid 16094 . . . . . . . . . . . . . . . . . . . 20 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
5753, 56ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
5857eqcomi 2631 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
5922, 52, 58cncfcn 22712 . . . . . . . . . . . . . . . . 17 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
6046, 51, 59mp2an 708 . . . . . . . . . . . . . . . 16 ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))
6116, 60syl6eleq 2711 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
62 resttopon 20965 . . . . . . . . . . . . . . . . . . 19 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
6354, 46, 62mp2an 708 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))
6463toponunii 20721 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
6564eleq2i 2693 . . . . . . . . . . . . . . . 16 (𝑐 ∈ (𝐴(,)𝐵) ↔ 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
6665biimpi 206 . . . . . . . . . . . . . . 15 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
67 eqid 2622 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
6867cncnpi 21082 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐))
6961, 66, 68syl2an 494 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐))
70 eqid 2622 . . . . . . . . . . . . . . . . . 18 ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) = ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))
7122cnfldtopn 22585 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
72 eqid 2622 . . . . . . . . . . . . . . . . . 18 (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))))
7370, 71, 72metrest 22329 . . . . . . . . . . . . . . . . 17 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))))
7445, 46, 73mp2an 708 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))))
7574oveq1i 6660 . . . . . . . . . . . . . . 15 (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))
7675fveq1i 6192 . . . . . . . . . . . . . 14 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐) = (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐)
7769, 76syl6eleq 2711 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐))
7877adantr 481 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐))
79 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
8072, 71metcnpi2 22350 . . . . . . . . . . . 12 (((((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐) ∧ 𝑤 ∈ ℝ+)) → ∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤))
8149, 50, 78, 79, 80syl22anc 1327 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤))
82 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑢 ∈ (𝐴(,)𝐵))
83 simpllr 799 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴(,)𝐵))
8482, 83ovresd 6801 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) = (𝑢(abs ∘ − )𝑐))
85 elioore 12205 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ ℝ)
8685recnd 10068 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ ℂ)
8786adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑢 ∈ ℂ)
8846sseli 3599 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℂ)
8988ad3antlr 767 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ℂ)
90 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (abs ∘ − ) = (abs ∘ − )
9190cnmetdval 22574 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑢(abs ∘ − )𝑐) = (abs‘(𝑢𝑐)))
9287, 89, 91syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢(abs ∘ − )𝑐) = (abs‘(𝑢𝑐)))
9384, 92eqtrd 2656 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) = (abs‘(𝑢𝑐)))
9493breq1d 4663 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → ((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 ↔ (abs‘(𝑢𝑐)) < 𝑣))
9518ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
9695ffvelrnda 6359 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝐹𝑢) ∈ ℂ)
9744ad2antrr 762 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
9890cnmetdval 22574 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑢) ∈ ℂ ∧ (𝐹𝑐) ∈ ℂ) → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) = (abs‘((𝐹𝑢) − (𝐹𝑐))))
9996, 97, 98syl2anc 693 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) = (abs‘((𝐹𝑢) − (𝐹𝑐))))
10099breq1d 4663 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤 ↔ (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))
10194, 100imbi12d 334 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) ↔ ((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)))
102101ralbidva 2985 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) ↔ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)))
103 simprll 802 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}))
104 eldifsni 4320 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → 𝑧𝑐)
105103, 104syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧𝑐)
10621ssdifssd 3748 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℝ)
107106sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → 𝑧 ∈ ℝ)
108107ad2ant2r 783 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → 𝑧 ∈ ℝ)
109108ad2ant2r 783 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ ℝ)
110 elioore 12205 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℝ)
111110ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ ℝ)
112109, 111lttri2d 10176 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (𝑧𝑐 ↔ (𝑧 < 𝑐𝑐 < 𝑧)))
113112biimpa 501 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧𝑐) → (𝑧 < 𝑐𝑐 < 𝑧))
114 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
115114oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = 𝑧 → ((𝐺𝑠) − (𝐺𝑐)) = ((𝐺𝑧) − (𝐺𝑐)))
116 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = 𝑧 → (𝑠𝑐) = (𝑧𝑐))
117115, 116oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 = 𝑧 → (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
118 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) = (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))
119 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) ∈ V
120117, 118, 119fvmpt 6282 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
121120ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
122121ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
12319ad4antr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
124 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → 𝑧 ∈ (𝐴[,]𝐵))
125124ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → 𝑧 ∈ (𝐴[,]𝐵))
126125ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ (𝐴[,]𝐵))
127123, 126ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (𝐺𝑧) ∈ ℂ)
12835sseli 3599 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
12919ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐺𝑐) ∈ ℂ)
130128, 129sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐺𝑐) ∈ ℂ)
131130ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (𝐺𝑐) ∈ ℂ)
132109adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ ℝ)
133132recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ ℂ)
13488ad4antlr 769 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑐 ∈ ℂ)
135 ltne 10134 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ ℝ ∧ 𝑧 < 𝑐) → 𝑐𝑧)
136135necomd 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑧 ∈ ℝ ∧ 𝑧 < 𝑐) → 𝑧𝑐)
137109, 136sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧𝑐)
138127, 131, 133, 134, 137div2subd 10851 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) = (((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)))
139122, 138eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)))
140139oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐)) = ((((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)) − (𝐹𝑐)))
141140fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)) − (𝐹𝑐))))
1428ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐴 ∈ ℝ)
1439ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐵 ∈ ℝ)
14410ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐴𝐵)
14516ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
14615ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐹 ∈ 𝐿1)
147 simpllr 799 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ (𝐴(,)𝐵))
148 simplrl 800 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑤 ∈ ℝ+)
149 simplrr 801 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑣 ∈ ℝ+)
150 simprlr 803 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))
151 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢 = 𝑦 → (𝑢𝑐) = (𝑦𝑐))
152151fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 = 𝑦 → (abs‘(𝑢𝑐)) = (abs‘(𝑦𝑐)))
153152breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 = 𝑦 → ((abs‘(𝑢𝑐)) < 𝑣 ↔ (abs‘(𝑦𝑐)) < 𝑣))
154 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢 = 𝑦 → (𝐹𝑢) = (𝐹𝑦))
155154oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢 = 𝑦 → ((𝐹𝑢) − (𝐹𝑐)) = ((𝐹𝑦) − (𝐹𝑐)))
156155fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 = 𝑦 → (abs‘((𝐹𝑢) − (𝐹𝑐))) = (abs‘((𝐹𝑦) − (𝐹𝑐))))
157156breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 = 𝑦 → ((abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤 ↔ (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤))
158153, 157imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = 𝑦 → (((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) ↔ ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤)))
159158rspccva 3308 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤))
160150, 159sylan 488 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤))
161103, 124syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ (𝐴[,]𝐵))
162 simprr 796 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑧𝑐)) < 𝑣)
163128ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ (𝐴[,]𝐵))
164110recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℂ)
165164subidd 10380 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 ∈ (𝐴(,)𝐵) → (𝑐𝑐) = 0)
166165abs00bd 14031 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 ∈ (𝐴(,)𝐵) → (abs‘(𝑐𝑐)) = 0)
167166ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑐𝑐)) = 0)
168149rpgt0d 11875 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 0 < 𝑣)
169167, 168eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑐𝑐)) < 𝑣)
1707, 142, 143, 144, 145, 146, 147, 118, 148, 149, 160, 161, 162, 163, 169ftc1cnnclem 33483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘((((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)) − (𝐹𝑐))) < 𝑤)
171141, 170eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
172120oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → (((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐)) = ((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐)))
173172fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
174173ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
175174ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
1767, 142, 143, 144, 145, 146, 147, 118, 148, 149, 160, 163, 169, 161, 162ftc1cnnclem 33483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))) < 𝑤)
177175, 176eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
178171, 177jaodan 826 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ (𝑧 < 𝑐𝑐 < 𝑧)) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
179113, 178syldan 487 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
180105, 179mpdan 702 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
181180expr 643 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → ((abs‘(𝑧𝑐)) < 𝑣 → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
182181adantld 483 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → ((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
183182expr 643 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → (∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) → ((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
184183ralrimdva 2969 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
185102, 184sylbid 230 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
186185anassrs 680 . . . . . . . . . . . 12 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ ℝ+) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
187186reximdva 3017 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → (∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∃𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
18881, 187mpd 15 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
189188ralrimiva 2966 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
19019adantr 481 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
19121, 5syl6ss 3615 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
192191adantr 481 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℂ)
193128adantl 482 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
194190, 192, 193dvlem 23660 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)) ∈ ℂ)
195194, 118fmptd 6385 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))):((𝐴[,]𝐵) ∖ {𝑐})⟶ℂ)
196191ssdifssd 3748 . . . . . . . . . . 11 (𝜑 → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℂ)
197196adantr 481 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℂ)
19888adantl 482 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ℂ)
199195, 197, 198ellimc3 23643 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐) ↔ ((𝐹𝑐) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))))
20044, 189, 199mpbir2and 957 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))
201 eqid 2622 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
202201, 22, 118, 6, 19, 21eldv 23662 . . . . . . . . 9 (𝜑 → (𝑐(ℝ D 𝐺)(𝐹𝑐) ↔ (𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)) ∧ (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))))
203202adantr 481 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝑐(ℝ D 𝐺)(𝐹𝑐) ↔ (𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)) ∧ (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))))
20443, 200, 203mpbir2and 957 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐(ℝ D 𝐺)(𝐹𝑐))
205 vex 3203 . . . . . . . 8 𝑐 ∈ V
206 fvex 6201 . . . . . . . 8 (𝐹𝑐) ∈ V
207205, 206breldm 5329 . . . . . . 7 (𝑐(ℝ D 𝐺)(𝐹𝑐) → 𝑐 ∈ dom (ℝ D 𝐺))
208204, 207syl 17 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ dom (ℝ D 𝐺))
209208ex 450 . . . . 5 (𝜑 → (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ dom (ℝ D 𝐺)))
210209ssrdv 3609 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ dom (ℝ D 𝐺))
21127, 210eqssd 3620 . . 3 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
212 df-fn 5891 . . 3 ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)))
2134, 211, 212sylanbrc 698 . 2 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
214 ffn 6045 . . 3 (𝐹:(𝐴(,)𝐵)⟶ℂ → 𝐹 Fn (𝐴(,)𝐵))
21518, 214syl 17 . 2 (𝜑𝐹 Fn (𝐴(,)𝐵))
2164adantr 481 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺))
217 funbrfv 6234 . . 3 (Fun (ℝ D 𝐺) → (𝑐(ℝ D 𝐺)(𝐹𝑐) → ((ℝ D 𝐺)‘𝑐) = (𝐹𝑐)))
218216, 204, 217sylc 65 . 2 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑐) = (𝐹𝑐))
219213, 215, 218eqfnfvd 6314 1 (𝜑 → (ℝ D 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  wss 3574  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  cres 5116  ccom 5118  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  +crp 11832  (,)cioo 12175  [,]cicc 12178  abscabs 13974  t crest 16081  TopOpenctopn 16082  topGenctg 16098  ∞Metcxmt 19731  MetOpencmopn 19736  fldccnfld 19746  Topctop 20698  TopOnctopon 20715  intcnt 20821   Cn ccn 21028   CnP ccnp 21029  cnccncf 22679  𝐿1cibl 23386  citg 23387   lim climc 23626   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631
This theorem is referenced by:  ftc2nc  33494
  Copyright terms: Public domain W3C validator