| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzsubr | Structured version Visualization version Unicode version | ||
| Description: Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| cntzsubr.b |
|
| cntzsubr.m |
|
| cntzsubr.z |
|
| Ref | Expression |
|---|---|
| cntzsubr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzsubr.m |
. . . . . 6
| |
| 2 | cntzsubr.b |
. . . . . 6
| |
| 3 | 1, 2 | mgpbas 18495 |
. . . . 5
|
| 4 | cntzsubr.z |
. . . . 5
| |
| 5 | 3, 4 | cntzssv 17761 |
. . . 4
|
| 6 | 5 | a1i 11 |
. . 3
|
| 7 | simpll 790 |
. . . . . . . 8
| |
| 8 | ssel2 3598 |
. . . . . . . . 9
| |
| 9 | 8 | adantll 750 |
. . . . . . . 8
|
| 10 | eqid 2622 |
. . . . . . . . 9
| |
| 11 | eqid 2622 |
. . . . . . . . 9
| |
| 12 | 2, 10, 11 | ringlz 18587 |
. . . . . . . 8
|
| 13 | 7, 9, 12 | syl2anc 693 |
. . . . . . 7
|
| 14 | 2, 10, 11 | ringrz 18588 |
. . . . . . . 8
|
| 15 | 7, 9, 14 | syl2anc 693 |
. . . . . . 7
|
| 16 | 13, 15 | eqtr4d 2659 |
. . . . . 6
|
| 17 | 16 | ralrimiva 2966 |
. . . . 5
|
| 18 | simpr 477 |
. . . . . 6
| |
| 19 | 2, 11 | ring0cl 18569 |
. . . . . . 7
|
| 20 | 19 | adantr 481 |
. . . . . 6
|
| 21 | 1, 10 | mgpplusg 18493 |
. . . . . . 7
|
| 22 | 3, 21, 4 | cntzel 17756 |
. . . . . 6
|
| 23 | 18, 20, 22 | syl2anc 693 |
. . . . 5
|
| 24 | 17, 23 | mpbird 247 |
. . . 4
|
| 25 | ne0i 3921 |
. . . 4
| |
| 26 | 24, 25 | syl 17 |
. . 3
|
| 27 | simpl2 1065 |
. . . . . . . . . . . 12
| |
| 28 | simpr 477 |
. . . . . . . . . . . 12
| |
| 29 | 21, 4 | cntzi 17762 |
. . . . . . . . . . . 12
|
| 30 | 27, 28, 29 | syl2anc 693 |
. . . . . . . . . . 11
|
| 31 | simpl3 1066 |
. . . . . . . . . . . 12
| |
| 32 | 21, 4 | cntzi 17762 |
. . . . . . . . . . . 12
|
| 33 | 31, 28, 32 | syl2anc 693 |
. . . . . . . . . . 11
|
| 34 | 30, 33 | oveq12d 6668 |
. . . . . . . . . 10
|
| 35 | simpl1l 1112 |
. . . . . . . . . . 11
| |
| 36 | 5, 27 | sseldi 3601 |
. . . . . . . . . . 11
|
| 37 | 5, 31 | sseldi 3601 |
. . . . . . . . . . 11
|
| 38 | simp1r 1086 |
. . . . . . . . . . . 12
| |
| 39 | 38 | sselda 3603 |
. . . . . . . . . . 11
|
| 40 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 41 | 2, 40, 10 | ringdir 18567 |
. . . . . . . . . . 11
|
| 42 | 35, 36, 37, 39, 41 | syl13anc 1328 |
. . . . . . . . . 10
|
| 43 | 2, 40, 10 | ringdi 18566 |
. . . . . . . . . . 11
|
| 44 | 35, 39, 36, 37, 43 | syl13anc 1328 |
. . . . . . . . . 10
|
| 45 | 34, 42, 44 | 3eqtr4d 2666 |
. . . . . . . . 9
|
| 46 | 45 | ralrimiva 2966 |
. . . . . . . 8
|
| 47 | simp1l 1085 |
. . . . . . . . . 10
| |
| 48 | simp2 1062 |
. . . . . . . . . . 11
| |
| 49 | 5, 48 | sseldi 3601 |
. . . . . . . . . 10
|
| 50 | simp3 1063 |
. . . . . . . . . . 11
| |
| 51 | 5, 50 | sseldi 3601 |
. . . . . . . . . 10
|
| 52 | 2, 40 | ringacl 18578 |
. . . . . . . . . 10
|
| 53 | 47, 49, 51, 52 | syl3anc 1326 |
. . . . . . . . 9
|
| 54 | 3, 21, 4 | cntzel 17756 |
. . . . . . . . 9
|
| 55 | 38, 53, 54 | syl2anc 693 |
. . . . . . . 8
|
| 56 | 46, 55 | mpbird 247 |
. . . . . . 7
|
| 57 | 56 | 3expa 1265 |
. . . . . 6
|
| 58 | 57 | ralrimiva 2966 |
. . . . 5
|
| 59 | 29 | adantll 750 |
. . . . . . . . 9
|
| 60 | 59 | fveq2d 6195 |
. . . . . . . 8
|
| 61 | eqid 2622 |
. . . . . . . . 9
| |
| 62 | simplll 798 |
. . . . . . . . 9
| |
| 63 | simplr 792 |
. . . . . . . . . 10
| |
| 64 | 5, 63 | sseldi 3601 |
. . . . . . . . 9
|
| 65 | simplr 792 |
. . . . . . . . . 10
| |
| 66 | 65 | sselda 3603 |
. . . . . . . . 9
|
| 67 | 2, 10, 61, 62, 64, 66 | ringmneg1 18596 |
. . . . . . . 8
|
| 68 | 2, 10, 61, 62, 66, 64 | ringmneg2 18597 |
. . . . . . . 8
|
| 69 | 60, 67, 68 | 3eqtr4d 2666 |
. . . . . . 7
|
| 70 | 69 | ralrimiva 2966 |
. . . . . 6
|
| 71 | ringgrp 18552 |
. . . . . . . . 9
| |
| 72 | 71 | ad2antrr 762 |
. . . . . . . 8
|
| 73 | simpr 477 |
. . . . . . . . 9
| |
| 74 | 5, 73 | sseldi 3601 |
. . . . . . . 8
|
| 75 | 2, 61 | grpinvcl 17467 |
. . . . . . . 8
|
| 76 | 72, 74, 75 | syl2anc 693 |
. . . . . . 7
|
| 77 | 3, 21, 4 | cntzel 17756 |
. . . . . . 7
|
| 78 | 65, 76, 77 | syl2anc 693 |
. . . . . 6
|
| 79 | 70, 78 | mpbird 247 |
. . . . 5
|
| 80 | 58, 79 | jca 554 |
. . . 4
|
| 81 | 80 | ralrimiva 2966 |
. . 3
|
| 82 | 71 | adantr 481 |
. . . 4
|
| 83 | 2, 40, 61 | issubg2 17609 |
. . . 4
|
| 84 | 82, 83 | syl 17 |
. . 3
|
| 85 | 6, 26, 81, 84 | mpbir3and 1245 |
. 2
|
| 86 | 1 | ringmgp 18553 |
. . 3
|
| 87 | 3, 4 | cntzsubm 17768 |
. . 3
|
| 88 | 86, 87 | sylan 488 |
. 2
|
| 89 | 1 | issubrg3 18808 |
. . 3
|
| 90 | 89 | adantr 481 |
. 2
|
| 91 | 85, 88, 90 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-subg 17591 df-cntz 17750 df-mgp 18490 df-ur 18502 df-ring 18549 df-subrg 18778 |
| This theorem is referenced by: cntzsdrg 37772 |
| Copyright terms: Public domain | W3C validator |