MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmpwdvds Structured version   Visualization version   GIF version

Theorem prmpwdvds 15608
Description: A relation involving divisibility by a prime power. (Contributed by Mario Carneiro, 2-Mar-2014.)
Assertion
Ref Expression
prmpwdvds (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ (𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1))))) → (𝑃𝑁) ∥ 𝐷)

Proof of Theorem prmpwdvds
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . 3 (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ)) → 𝐾 ∈ ℤ)
2 oveq2 6658 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑃𝑥) = (𝑃↑1))
32oveq2d 6666 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑘 · (𝑃𝑥)) = (𝑘 · (𝑃↑1)))
43breq2d 4665 . . . . . . . . . . 11 (𝑥 = 1 → (𝐷 ∥ (𝑘 · (𝑃𝑥)) ↔ 𝐷 ∥ (𝑘 · (𝑃↑1))))
5 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝑥 − 1) = (1 − 1))
65oveq2d 6666 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑃↑(𝑥 − 1)) = (𝑃↑(1 − 1)))
76oveq2d 6666 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑘 · (𝑃↑(𝑥 − 1))) = (𝑘 · (𝑃↑(1 − 1))))
87breq2d 4665 . . . . . . . . . . . 12 (𝑥 = 1 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))))
98notbid 308 . . . . . . . . . . 11 (𝑥 = 1 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))))
104, 9anbi12d 747 . . . . . . . . . 10 (𝑥 = 1 → ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1))))))
112breq1d 4663 . . . . . . . . . 10 (𝑥 = 1 → ((𝑃𝑥) ∥ 𝐷 ↔ (𝑃↑1) ∥ 𝐷))
1210, 11imbi12d 334 . . . . . . . . 9 (𝑥 = 1 → (((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷)))
1312ralbidv 2986 . . . . . . . 8 (𝑥 = 1 → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷)))
1413imbi2d 330 . . . . . . 7 (𝑥 = 1 → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷)) ↔ ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷))))
15 oveq2 6658 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑃𝑥) = (𝑃𝑛))
1615oveq2d 6666 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (𝑘 · (𝑃𝑥)) = (𝑘 · (𝑃𝑛)))
1716breq2d 4665 . . . . . . . . . . 11 (𝑥 = 𝑛 → (𝐷 ∥ (𝑘 · (𝑃𝑥)) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
18 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (𝑥 − 1) = (𝑛 − 1))
1918oveq2d 6666 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (𝑃↑(𝑥 − 1)) = (𝑃↑(𝑛 − 1)))
2019oveq2d 6666 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑘 · (𝑃↑(𝑥 − 1))) = (𝑘 · (𝑃↑(𝑛 − 1))))
2120breq2d 4665 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))))
2221notbid 308 . . . . . . . . . . 11 (𝑥 = 𝑛 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))))
2317, 22anbi12d 747 . . . . . . . . . 10 (𝑥 = 𝑛 → ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1))))))
2415breq1d 4663 . . . . . . . . . 10 (𝑥 = 𝑛 → ((𝑃𝑥) ∥ 𝐷 ↔ (𝑃𝑛) ∥ 𝐷))
2523, 24imbi12d 334 . . . . . . . . 9 (𝑥 = 𝑛 → (((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
2625ralbidv 2986 . . . . . . . 8 (𝑥 = 𝑛 → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
2726imbi2d 330 . . . . . . 7 (𝑥 = 𝑛 → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷)) ↔ ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷))))
28 oveq2 6658 . . . . . . . . . . . . 13 (𝑥 = (𝑛 + 1) → (𝑃𝑥) = (𝑃↑(𝑛 + 1)))
2928oveq2d 6666 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝑘 · (𝑃𝑥)) = (𝑘 · (𝑃↑(𝑛 + 1))))
3029breq2d 4665 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝐷 ∥ (𝑘 · (𝑃𝑥)) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1)))))
31 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → (𝑥 − 1) = ((𝑛 + 1) − 1))
3231oveq2d 6666 . . . . . . . . . . . . . 14 (𝑥 = (𝑛 + 1) → (𝑃↑(𝑥 − 1)) = (𝑃↑((𝑛 + 1) − 1)))
3332oveq2d 6666 . . . . . . . . . . . . 13 (𝑥 = (𝑛 + 1) → (𝑘 · (𝑃↑(𝑥 − 1))) = (𝑘 · (𝑃↑((𝑛 + 1) − 1))))
3433breq2d 4665 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))))
3534notbid 308 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))))
3630, 35anbi12d 747 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1))))))
3728breq1d 4663 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝑃𝑥) ∥ 𝐷 ↔ (𝑃↑(𝑛 + 1)) ∥ 𝐷))
3836, 37imbi12d 334 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
3938ralbidv 2986 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
4039imbi2d 330 . . . . . . 7 (𝑥 = (𝑛 + 1) → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷)) ↔ ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷))))
41 oveq2 6658 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
4241oveq2d 6666 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝑘 · (𝑃𝑥)) = (𝑘 · (𝑃𝑁)))
4342breq2d 4665 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝐷 ∥ (𝑘 · (𝑃𝑥)) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑁))))
44 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑥 = 𝑁 → (𝑥 − 1) = (𝑁 − 1))
4544oveq2d 6666 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑃↑(𝑥 − 1)) = (𝑃↑(𝑁 − 1)))
4645oveq2d 6666 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → (𝑘 · (𝑃↑(𝑥 − 1))) = (𝑘 · (𝑃↑(𝑁 − 1))))
4746breq2d 4665 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))))
4847notbid 308 . . . . . . . . . . 11 (𝑥 = 𝑁 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))))
4943, 48anbi12d 747 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1))))))
5041breq1d 4663 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝑃𝑥) ∥ 𝐷 ↔ (𝑃𝑁) ∥ 𝐷))
5149, 50imbi12d 334 . . . . . . . . 9 (𝑥 = 𝑁 → (((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
5251ralbidv 2986 . . . . . . . 8 (𝑥 = 𝑁 → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
5352imbi2d 330 . . . . . . 7 (𝑥 = 𝑁 → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷)) ↔ ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷))))
54 breq1 4656 . . . . . . . . . . . . . 14 (𝑥 = 𝐷 → (𝑥 ∥ (𝑘 · 𝑃) ↔ 𝐷 ∥ (𝑘 · 𝑃)))
55 breq1 4656 . . . . . . . . . . . . . . 15 (𝑥 = 𝐷 → (𝑥𝑘𝐷𝑘))
5655notbid 308 . . . . . . . . . . . . . 14 (𝑥 = 𝐷 → (¬ 𝑥𝑘 ↔ ¬ 𝐷𝑘))
5754, 56anbi12d 747 . . . . . . . . . . . . 13 (𝑥 = 𝐷 → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) ↔ (𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘)))
58 breq2 4657 . . . . . . . . . . . . 13 (𝑥 = 𝐷 → (𝑃𝑥𝑃𝐷))
5957, 58imbi12d 334 . . . . . . . . . . . 12 (𝑥 = 𝐷 → (((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥) ↔ ((𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘) → 𝑃𝐷)))
6059imbi2d 330 . . . . . . . . . . 11 (𝑥 = 𝐷 → (((𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥)) ↔ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘) → 𝑃𝐷))))
61 simplrl 800 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → 𝑃 ∈ ℙ)
62 simpll 790 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → 𝑥 ∈ ℤ)
63 coprm 15423 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
6461, 62, 63syl2anc 693 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
65 zcn 11382 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
6665ad2antll 765 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
67 prmz 15389 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
6867ad2antrl 764 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℤ)
6968zcnd 11483 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℂ)
7066, 69mulcomd 10061 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑃) = (𝑃 · 𝑘))
7170breq2d 4665 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑥 ∥ (𝑘 · 𝑃) ↔ 𝑥 ∥ (𝑃 · 𝑘)))
72 simpl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑥 ∈ ℤ)
73 gcdcom 15235 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑃 gcd 𝑥) = (𝑥 gcd 𝑃))
7468, 72, 73syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 gcd 𝑥) = (𝑥 gcd 𝑃))
7574eqeq1d 2624 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃 gcd 𝑥) = 1 ↔ (𝑥 gcd 𝑃) = 1))
7671, 75anbi12d 747 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ (𝑃 gcd 𝑥) = 1) ↔ (𝑥 ∥ (𝑃 · 𝑘) ∧ (𝑥 gcd 𝑃) = 1)))
77 simprr 796 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
78 coprmdvds 15366 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑥 ∥ (𝑃 · 𝑘) ∧ (𝑥 gcd 𝑃) = 1) → 𝑥𝑘))
7972, 68, 77, 78syl3anc 1326 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑃 · 𝑘) ∧ (𝑥 gcd 𝑃) = 1) → 𝑥𝑘))
8076, 79sylbid 230 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ (𝑃 gcd 𝑥) = 1) → 𝑥𝑘))
8180expdimp 453 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → ((𝑃 gcd 𝑥) = 1 → 𝑥𝑘))
8264, 81sylbid 230 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → (¬ 𝑃𝑥𝑥𝑘))
8382con1d 139 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → (¬ 𝑥𝑘𝑃𝑥))
8483expimpd 629 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥))
8584ex 450 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥)))
8660, 85vtoclga 3272 . . . . . . . . . 10 (𝐷 ∈ ℤ → ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘) → 𝑃𝐷)))
8786impl 650 . . . . . . . . 9 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘) → 𝑃𝐷))
8867zcnd 11483 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
8988exp1d 13003 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃↑1) = 𝑃)
9089ad2antlr 763 . . . . . . . . . . . 12 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑃↑1) = 𝑃)
9190oveq2d 6666 . . . . . . . . . . 11 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑃↑1)) = (𝑘 · 𝑃))
9291breq2d 4665 . . . . . . . . . 10 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝐷 ∥ (𝑘 · (𝑃↑1)) ↔ 𝐷 ∥ (𝑘 · 𝑃)))
93 1m1e0 11089 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
9493oveq2i 6661 . . . . . . . . . . . . . . 15 (𝑃↑(1 − 1)) = (𝑃↑0)
9567ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → 𝑃 ∈ ℤ)
9695zcnd 11483 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → 𝑃 ∈ ℂ)
9796exp0d 13002 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑃↑0) = 1)
9894, 97syl5eq 2668 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑃↑(1 − 1)) = 1)
9998oveq2d 6666 . . . . . . . . . . . . 13 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑃↑(1 − 1))) = (𝑘 · 1))
10065adantl 482 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
101100mulid1d 10057 . . . . . . . . . . . . 13 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑘 · 1) = 𝑘)
10299, 101eqtrd 2656 . . . . . . . . . . . 12 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑃↑(1 − 1))) = 𝑘)
103102breq2d 4665 . . . . . . . . . . 11 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝐷 ∥ (𝑘 · (𝑃↑(1 − 1))) ↔ 𝐷𝑘))
104103notbid 308 . . . . . . . . . 10 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1))) ↔ ¬ 𝐷𝑘))
10592, 104anbi12d 747 . . . . . . . . 9 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) ↔ (𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘)))
10696exp1d 13003 . . . . . . . . . 10 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑃↑1) = 𝑃)
107106breq1d 4663 . . . . . . . . 9 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → ((𝑃↑1) ∥ 𝐷𝑃𝐷))
10887, 105, 1073imtr4d 283 . . . . . . . 8 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷))
109108ralrimiva 2966 . . . . . . 7 ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷))
110 oveq1 6657 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘 · (𝑃𝑛)) = (𝑥 · (𝑃𝑛)))
111110breq2d 4665 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → (𝐷 ∥ (𝑘 · (𝑃𝑛)) ↔ 𝐷 ∥ (𝑥 · (𝑃𝑛))))
112 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → (𝑘 · (𝑃↑(𝑛 − 1))) = (𝑥 · (𝑃↑(𝑛 − 1))))
113112breq2d 4665 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1))) ↔ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))))
114113notbid 308 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1))) ↔ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))))
115111, 114anbi12d 747 . . . . . . . . . . . 12 (𝑘 = 𝑥 → ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) ↔ (𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1))))))
116115imbi1d 331 . . . . . . . . . . 11 (𝑘 = 𝑥 → (((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
117116cbvralv 3171 . . . . . . . . . 10 (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) ↔ ∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷))
118 simprr 796 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
11967ad2antrl 764 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℤ)
120118, 119zmulcld 11488 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑃) ∈ ℤ)
121 oveq1 6657 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑘 · 𝑃) → (𝑥 · (𝑃𝑛)) = ((𝑘 · 𝑃) · (𝑃𝑛)))
122121breq2d 4665 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑘 · 𝑃) → (𝐷 ∥ (𝑥 · (𝑃𝑛)) ↔ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛))))
123 oveq1 6657 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑘 · 𝑃) → (𝑥 · (𝑃↑(𝑛 − 1))) = ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))))
124123breq2d 4665 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑘 · 𝑃) → (𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1))) ↔ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))))
125124notbid 308 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑘 · 𝑃) → (¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1))) ↔ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))))
126122, 125anbi12d 747 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑘 · 𝑃) → ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) ↔ (𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))))))
127126imbi1d 331 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 · 𝑃) → (((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) ↔ ((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
128127rspcv 3305 . . . . . . . . . . . . . 14 ((𝑘 · 𝑃) ∈ ℤ → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
129120, 128syl 17 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
130 nnnn0 11299 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
131130ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑛 ∈ ℕ0)
132 zexpcl 12875 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℤ)
133119, 131, 132syl2anc 693 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℤ)
134 simplr 792 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝐷 ∈ ℤ)
135 divides 14985 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑛) ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝑃𝑛) ∥ 𝐷 ↔ ∃𝑥 ∈ ℤ (𝑥 · (𝑃𝑛)) = 𝐷))
136133, 134, 135syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃𝑛) ∥ 𝐷 ↔ ∃𝑥 ∈ ℤ (𝑥 · (𝑃𝑛)) = 𝐷))
13784adantll 750 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥))
138 prmnn 15388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
139138ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℕ)
140139nncnd 11036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℂ)
141130ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑛 ∈ ℕ0)
142140, 141expp1d 13009 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 + 1)) = ((𝑃𝑛) · 𝑃))
143139, 141nnexpcld 13030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℕ)
144143nncnd 11036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℂ)
145144, 140mulcomd 10061 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃𝑛) · 𝑃) = (𝑃 · (𝑃𝑛)))
146142, 145eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 + 1)) = (𝑃 · (𝑃𝑛)))
147146oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃↑(𝑛 + 1))) = (𝑘 · (𝑃 · (𝑃𝑛))))
14865ad2antll 765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
149148, 140, 144mulassd 10063 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃𝑛)) = (𝑘 · (𝑃 · (𝑃𝑛))))
150147, 149eqtr4d 2659 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃↑(𝑛 + 1))) = ((𝑘 · 𝑃) · (𝑃𝑛)))
151150breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ↔ (𝑥 · (𝑃𝑛)) ∥ ((𝑘 · 𝑃) · (𝑃𝑛))))
152 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑥 ∈ ℤ)
153 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
154139nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℤ)
155153, 154zmulcld 11488 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑃) ∈ ℤ)
156143nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℤ)
157143nnne0d 11065 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ≠ 0)
158 dvdsmulcr 15011 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ ℤ ∧ (𝑘 · 𝑃) ∈ ℤ ∧ ((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0)) → ((𝑥 · (𝑃𝑛)) ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ↔ 𝑥 ∥ (𝑘 · 𝑃)))
159152, 155, 156, 157, 158syl112anc 1330 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 · (𝑃𝑛)) ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ↔ 𝑥 ∥ (𝑘 · 𝑃)))
160151, 159bitrd 268 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ↔ 𝑥 ∥ (𝑘 · 𝑃)))
161 dvdsmulcr 15011 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ ((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0)) → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ 𝑥𝑘))
162152, 153, 156, 157, 161syl112anc 1330 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ 𝑥𝑘))
163162notbid 308 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ ¬ 𝑥𝑘))
164160, 163anbi12d 747 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) ↔ (𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘)))
165146breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛)) ↔ (𝑃 · (𝑃𝑛)) ∥ (𝑥 · (𝑃𝑛))))
166 dvdsmulcr 15011 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ ((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0)) → ((𝑃 · (𝑃𝑛)) ∥ (𝑥 · (𝑃𝑛)) ↔ 𝑃𝑥))
167154, 152, 156, 157, 166syl112anc 1330 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃 · (𝑃𝑛)) ∥ (𝑥 · (𝑃𝑛)) ↔ 𝑃𝑥))
168165, 167bitrd 268 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛)) ↔ 𝑃𝑥))
169137, 164, 1683imtr4d 283 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛))))
170169an32s 846 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → (((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛))))
171 breq1 4656 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 · (𝑃𝑛)) = 𝐷 → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1)))))
172 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 · (𝑃𝑛)) = 𝐷 → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
173172notbid 308 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 · (𝑃𝑛)) = 𝐷 → (¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
174171, 173anbi12d 747 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 · (𝑃𝑛)) = 𝐷 → (((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛)))))
175 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 · (𝑃𝑛)) = 𝐷 → ((𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛)) ↔ (𝑃↑(𝑛 + 1)) ∥ 𝐷))
176174, 175imbi12d 334 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 · (𝑃𝑛)) = 𝐷 → ((((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛))) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
177170, 176syl5ibcom 235 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝑃𝑛)) = 𝐷 → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
178177rexlimdva 3031 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (∃𝑥 ∈ ℤ (𝑥 · (𝑃𝑛)) = 𝐷 → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
179178adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (∃𝑥 ∈ ℤ (𝑥 · (𝑃𝑛)) = 𝐷 → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
180136, 179sylbid 230 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃𝑛) ∥ 𝐷 → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
181180com23 86 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → ((𝑃𝑛) ∥ 𝐷 → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
182181a2d 29 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
18365ad2antll 765 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
184119zcnd 11483 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℂ)
185133zcnd 11483 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℂ)
186183, 184, 185mulassd 10063 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃𝑛)) = (𝑘 · (𝑃 · (𝑃𝑛))))
187184, 185mulcomd 10061 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 · (𝑃𝑛)) = ((𝑃𝑛) · 𝑃))
188184, 131expp1d 13009 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 + 1)) = ((𝑃𝑛) · 𝑃))
189187, 188eqtr4d 2659 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 · (𝑃𝑛)) = (𝑃↑(𝑛 + 1)))
190189oveq2d 6666 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃 · (𝑃𝑛))) = (𝑘 · (𝑃↑(𝑛 + 1))))
191186, 190eqtrd 2656 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃𝑛)) = (𝑘 · (𝑃↑(𝑛 + 1))))
192191breq2d 4665 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1)))))
193 nnm1nn0 11334 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
194193ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑛 − 1) ∈ ℕ0)
195 zexpcl 12875 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℤ ∧ (𝑛 − 1) ∈ ℕ0) → (𝑃↑(𝑛 − 1)) ∈ ℤ)
196119, 194, 195syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 − 1)) ∈ ℤ)
197196zcnd 11483 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 − 1)) ∈ ℂ)
198183, 184, 197mulassd 10063 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))) = (𝑘 · (𝑃 · (𝑃↑(𝑛 − 1)))))
199184, 197mulcomd 10061 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 · (𝑃↑(𝑛 − 1))) = ((𝑃↑(𝑛 − 1)) · 𝑃))
200 simpll 790 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑛 ∈ ℕ)
201 expm1t 12888 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (𝑃𝑛) = ((𝑃↑(𝑛 − 1)) · 𝑃))
202184, 200, 201syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) = ((𝑃↑(𝑛 − 1)) · 𝑃))
203199, 202eqtr4d 2659 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 · (𝑃↑(𝑛 − 1))) = (𝑃𝑛))
204203oveq2d 6666 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃 · (𝑃↑(𝑛 − 1)))) = (𝑘 · (𝑃𝑛)))
205198, 204eqtrd 2656 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))) = (𝑘 · (𝑃𝑛)))
206205breq2d 4665 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
207206notbid 308 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
208192, 207anbi12d 747 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛)))))
209208imbi1d 331 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃𝑛) ∥ 𝐷)))
210 nncn 11028 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
211210ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑛 ∈ ℂ)
212 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
213 pncan 10287 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
214211, 212, 213sylancl 694 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑛 + 1) − 1) = 𝑛)
215214oveq2d 6666 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑((𝑛 + 1) − 1)) = (𝑃𝑛))
216215oveq2d 6666 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃↑((𝑛 + 1) − 1))) = (𝑘 · (𝑃𝑛)))
217216breq2d 4665 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
218217notbid 308 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
219218anbi2d 740 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛)))))
220219imbi1d 331 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
221182, 209, 2203imtr4d 283 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
222129, 221syld 47 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
223222anassrs 680 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
224223ralrimdva 2969 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ 𝑃 ∈ ℙ) → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
225117, 224syl5bi 232 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ 𝑃 ∈ ℙ) → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
226225expl 648 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷))))
227226a2d 29 . . . . . . 7 (𝑛 ∈ ℕ → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)) → ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷))))
22814, 27, 40, 53, 109, 227nnind 11038 . . . . . 6 (𝑁 ∈ ℕ → ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
229228com12 32 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ ℕ → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
230229impr 649 . . . 4 ((𝐷 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ)) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷))
231230adantll 750 . . 3 (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ)) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷))
232 oveq1 6657 . . . . . . 7 (𝑘 = 𝐾 → (𝑘 · (𝑃𝑁)) = (𝐾 · (𝑃𝑁)))
233232breq2d 4665 . . . . . 6 (𝑘 = 𝐾 → (𝐷 ∥ (𝑘 · (𝑃𝑁)) ↔ 𝐷 ∥ (𝐾 · (𝑃𝑁))))
234 oveq1 6657 . . . . . . . 8 (𝑘 = 𝐾 → (𝑘 · (𝑃↑(𝑁 − 1))) = (𝐾 · (𝑃↑(𝑁 − 1))))
235234breq2d 4665 . . . . . . 7 (𝑘 = 𝐾 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1))) ↔ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))))
236235notbid 308 . . . . . 6 (𝑘 = 𝐾 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1))) ↔ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))))
237233, 236anbi12d 747 . . . . 5 (𝑘 = 𝐾 → ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) ↔ (𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1))))))
238237imbi1d 331 . . . 4 (𝑘 = 𝐾 → (((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷) ↔ ((𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
239238rspcv 3305 . . 3 (𝐾 ∈ ℤ → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷) → ((𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
2401, 231, 239sylc 65 . 2 (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ)) → ((𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷))
2412403impia 1261 1 (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ (𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1))))) → (𝑃𝑁) ∥ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913   class class class wbr 4653  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  cn 11020  0cn0 11292  cz 11377  cexp 12860  cdvds 14983   gcd cgcd 15216  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386
This theorem is referenced by:  pockthlem  15609
  Copyright terms: Public domain W3C validator