![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablfac1lem | Structured version Visualization version GIF version |
Description: Lemma for ablfac1b 18469. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
ablfac1.b | ⊢ 𝐵 = (Base‘𝐺) |
ablfac1.o | ⊢ 𝑂 = (od‘𝐺) |
ablfac1.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (#‘𝐵)))}) |
ablfac1.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablfac1.f | ⊢ (𝜑 → 𝐵 ∈ Fin) |
ablfac1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℙ) |
ablfac1.m | ⊢ 𝑀 = (𝑃↑(𝑃 pCnt (#‘𝐵))) |
ablfac1.n | ⊢ 𝑁 = ((#‘𝐵) / 𝑀) |
Ref | Expression |
---|---|
ablfac1lem | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (#‘𝐵) = (𝑀 · 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablfac1.m | . . . 4 ⊢ 𝑀 = (𝑃↑(𝑃 pCnt (#‘𝐵))) | |
2 | ablfac1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℙ) | |
3 | 2 | sselda 3603 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℙ) |
4 | prmnn 15388 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℕ) |
6 | ablfac1.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
7 | ablgrp 18198 | . . . . . . . . 9 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
8 | ablfac1.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
9 | 8 | grpbn0 17451 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
10 | 6, 7, 9 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ ∅) |
11 | ablfac1.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
12 | hashnncl 13157 | . . . . . . . . 9 ⊢ (𝐵 ∈ Fin → ((#‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) | |
13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((#‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
14 | 10, 13 | mpbird 247 | . . . . . . 7 ⊢ (𝜑 → (#‘𝐵) ∈ ℕ) |
15 | 14 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (#‘𝐵) ∈ ℕ) |
16 | 3, 15 | pccld 15555 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃 pCnt (#‘𝐵)) ∈ ℕ0) |
17 | 5, 16 | nnexpcld 13030 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (#‘𝐵))) ∈ ℕ) |
18 | 1, 17 | syl5eqel 2705 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∈ ℕ) |
19 | ablfac1.n | . . . 4 ⊢ 𝑁 = ((#‘𝐵) / 𝑀) | |
20 | pcdvds 15568 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (#‘𝐵) ∈ ℕ) → (𝑃↑(𝑃 pCnt (#‘𝐵))) ∥ (#‘𝐵)) | |
21 | 3, 15, 20 | syl2anc 693 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (#‘𝐵))) ∥ (#‘𝐵)) |
22 | 1, 21 | syl5eqbr 4688 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∥ (#‘𝐵)) |
23 | nndivdvds 14989 | . . . . . 6 ⊢ (((#‘𝐵) ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (#‘𝐵) ↔ ((#‘𝐵) / 𝑀) ∈ ℕ)) | |
24 | 15, 18, 23 | syl2anc 693 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 ∥ (#‘𝐵) ↔ ((#‘𝐵) / 𝑀) ∈ ℕ)) |
25 | 22, 24 | mpbid 222 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((#‘𝐵) / 𝑀) ∈ ℕ) |
26 | 19, 25 | syl5eqel 2705 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑁 ∈ ℕ) |
27 | 18, 26 | jca 554 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) |
28 | 1 | oveq1i 6660 | . . 3 ⊢ (𝑀 gcd 𝑁) = ((𝑃↑(𝑃 pCnt (#‘𝐵))) gcd 𝑁) |
29 | pcndvds2 15572 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (#‘𝐵) ∈ ℕ) → ¬ 𝑃 ∥ ((#‘𝐵) / (𝑃↑(𝑃 pCnt (#‘𝐵))))) | |
30 | 3, 15, 29 | syl2anc 693 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ∥ ((#‘𝐵) / (𝑃↑(𝑃 pCnt (#‘𝐵))))) |
31 | 1 | oveq2i 6661 | . . . . . . . 8 ⊢ ((#‘𝐵) / 𝑀) = ((#‘𝐵) / (𝑃↑(𝑃 pCnt (#‘𝐵)))) |
32 | 19, 31 | eqtri 2644 | . . . . . . 7 ⊢ 𝑁 = ((#‘𝐵) / (𝑃↑(𝑃 pCnt (#‘𝐵)))) |
33 | 32 | breq2i 4661 | . . . . . 6 ⊢ (𝑃 ∥ 𝑁 ↔ 𝑃 ∥ ((#‘𝐵) / (𝑃↑(𝑃 pCnt (#‘𝐵))))) |
34 | 30, 33 | sylnibr 319 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ∥ 𝑁) |
35 | 26 | nnzd 11481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑁 ∈ ℤ) |
36 | coprm 15423 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) | |
37 | 3, 35, 36 | syl2anc 693 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) |
38 | 34, 37 | mpbid 222 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃 gcd 𝑁) = 1) |
39 | prmz 15389 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
40 | 3, 39 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℤ) |
41 | rpexp1i 15433 | . . . . 5 ⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑃 pCnt (#‘𝐵)) ∈ ℕ0) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (#‘𝐵))) gcd 𝑁) = 1)) | |
42 | 40, 35, 16, 41 | syl3anc 1326 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (#‘𝐵))) gcd 𝑁) = 1)) |
43 | 38, 42 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (#‘𝐵))) gcd 𝑁) = 1) |
44 | 28, 43 | syl5eq 2668 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 gcd 𝑁) = 1) |
45 | 19 | oveq2i 6661 | . . 3 ⊢ (𝑀 · 𝑁) = (𝑀 · ((#‘𝐵) / 𝑀)) |
46 | 15 | nncnd 11036 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (#‘𝐵) ∈ ℂ) |
47 | 18 | nncnd 11036 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∈ ℂ) |
48 | 18 | nnne0d 11065 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ≠ 0) |
49 | 46, 47, 48 | divcan2d 10803 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 · ((#‘𝐵) / 𝑀)) = (#‘𝐵)) |
50 | 45, 49 | syl5req 2669 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (#‘𝐵) = (𝑀 · 𝑁)) |
51 | 27, 44, 50 | 3jca 1242 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (#‘𝐵) = (𝑀 · 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 {crab 2916 ⊆ wss 3574 ∅c0 3915 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 1c1 9937 · cmul 9941 / cdiv 10684 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ↑cexp 12860 #chash 13117 ∥ cdvds 14983 gcd cgcd 15216 ℙcprime 15385 pCnt cpc 15541 Basecbs 15857 Grpcgrp 17422 odcod 17944 Abelcabl 18194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-fz 12327 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-prm 15386 df-pc 15542 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-abl 18196 |
This theorem is referenced by: ablfac1a 18468 ablfac1b 18469 |
Copyright terms: Public domain | W3C validator |