MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmprod Structured version   Visualization version   GIF version

Theorem coprmprod 15375
Description: The product of the elements of a sequence of pairwise coprime positive integers is coprime to a positive integer which is coprime to all integers of the sequence. (Contributed by AV, 18-Aug-2020.)
Assertion
Ref Expression
coprmprod (((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1) → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀,𝑛   𝑚,𝑁,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem coprmprod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3626 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ⊆ ℕ ↔ ∅ ⊆ ℕ))
213anbi1d 1403 . . . . . . . 8 (𝑥 = ∅ → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
3 raleq 3138 . . . . . . . 8 (𝑥 = ∅ → (∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ ∅ ((𝐹𝑚) gcd 𝑁) = 1))
4 difeq1 3721 . . . . . . . . . 10 (𝑥 = ∅ → (𝑥 ∖ {𝑚}) = (∅ ∖ {𝑚}))
54raleqdv 3144 . . . . . . . . 9 (𝑥 = ∅ → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
65raleqbi1dv 3146 . . . . . . . 8 (𝑥 = ∅ → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
72, 3, 63anbi123d 1399 . . . . . . 7 (𝑥 = ∅ → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
8 prodeq1 14639 . . . . . . . . 9 (𝑥 = ∅ → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚 ∈ ∅ (𝐹𝑚))
98oveq1d 6665 . . . . . . . 8 (𝑥 = ∅ → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁))
109eqeq1d 2624 . . . . . . 7 (𝑥 = ∅ → ((∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1))
117, 10imbi12d 334 . . . . . 6 (𝑥 = ∅ → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1) ↔ (((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1)))
12 sseq1 3626 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ⊆ ℕ ↔ 𝑦 ⊆ ℕ))
13123anbi1d 1403 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
14 raleq 3138 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ↔ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1))
15 difeq1 3721 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∖ {𝑚}) = (𝑦 ∖ {𝑚}))
1615raleqdv 3144 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
1716raleqbi1dv 3146 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
1813, 14, 173anbi123d 1399 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
19 prodeq1 14639 . . . . . . . . 9 (𝑥 = 𝑦 → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚𝑦 (𝐹𝑚))
2019oveq1d 6665 . . . . . . . 8 (𝑥 = 𝑦 → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁))
2120eqeq1d 2624 . . . . . . 7 (𝑥 = 𝑦 → ((∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1 ↔ (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1))
2218, 21imbi12d 334 . . . . . 6 (𝑥 = 𝑦 → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1) ↔ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)))
23 sseq1 3626 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ⊆ ℕ ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ))
24233anbi1d 1403 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
25 raleq 3138 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1))
26 difeq1 3721 . . . . . . . . . 10 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∖ {𝑚}) = ((𝑦 ∪ {𝑧}) ∖ {𝑚}))
2726raleqdv 3144 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
2827raleqbi1dv 3146 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
2924, 25, 283anbi123d 1399 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
30 prodeq1 14639 . . . . . . . . 9 (𝑥 = (𝑦 ∪ {𝑧}) → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚))
3130oveq1d 6665 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁))
3231eqeq1d 2624 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1 ↔ (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = 1))
3329, 32imbi12d 334 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1) ↔ ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = 1)))
34 sseq1 3626 . . . . . . . . 9 (𝑥 = 𝑀 → (𝑥 ⊆ ℕ ↔ 𝑀 ⊆ ℕ))
35343anbi1d 1403 . . . . . . . 8 (𝑥 = 𝑀 → ((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ↔ (𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
36 raleq 3138 . . . . . . . 8 (𝑥 = 𝑀 → (∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ↔ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1))
37 difeq1 3721 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑥 ∖ {𝑚}) = (𝑀 ∖ {𝑚}))
3837raleqdv 3144 . . . . . . . . 9 (𝑥 = 𝑀 → (∀𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
3938raleqbi1dv 3146 . . . . . . . 8 (𝑥 = 𝑀 → (∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 ↔ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
4035, 36, 393anbi123d 1399 . . . . . . 7 (𝑥 = 𝑀 → (((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) ↔ ((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
41 prodeq1 14639 . . . . . . . . 9 (𝑥 = 𝑀 → ∏𝑚𝑥 (𝐹𝑚) = ∏𝑚𝑀 (𝐹𝑚))
4241oveq1d 6665 . . . . . . . 8 (𝑥 = 𝑀 → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁))
4342eqeq1d 2624 . . . . . . 7 (𝑥 = 𝑀 → ((∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1 ↔ (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))
4440, 43imbi12d 334 . . . . . 6 (𝑥 = 𝑀 → ((((𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑥 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑥𝑛 ∈ (𝑥 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑥 (𝐹𝑚) gcd 𝑁) = 1) ↔ (((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1)))
45 prod0 14673 . . . . . . . . . . 11 𝑚 ∈ ∅ (𝐹𝑚) = 1
4645a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → ∏𝑚 ∈ ∅ (𝐹𝑚) = 1)
4746oveq1d 6665 . . . . . . . . 9 (𝑁 ∈ ℕ → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = (1 gcd 𝑁))
48 nnz 11399 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
49 1gcd 15254 . . . . . . . . . 10 (𝑁 ∈ ℤ → (1 gcd 𝑁) = 1)
5048, 49syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 gcd 𝑁) = 1)
5147, 50eqtrd 2656 . . . . . . . 8 (𝑁 ∈ ℕ → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1)
52513ad2ant2 1083 . . . . . . 7 ((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1)
53523ad2ant1 1082 . . . . . 6 (((∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ ∅ ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ ∅ ∀𝑛 ∈ (∅ ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ ∅ (𝐹𝑚) gcd 𝑁) = 1)
54 nfv 1843 . . . . . . . . . . . . . . . 16 𝑚(((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦))
55 nfcv 2764 . . . . . . . . . . . . . . . 16 𝑚(𝐹𝑧)
56 simprl 794 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ Fin)
57 unss 3787 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℕ)
58 vex 3203 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ V
5958snss 4316 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℕ ↔ {𝑧} ⊆ ℕ)
6059biimpri 218 . . . . . . . . . . . . . . . . . . . 20 ({𝑧} ⊆ ℕ → 𝑧 ∈ ℕ)
6160adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑧 ∈ ℕ)
6257, 61sylbir 225 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑧 ∈ ℕ)
63623ad2ant1 1082 . . . . . . . . . . . . . . . . 17 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑧 ∈ ℕ)
6463adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑧 ∈ ℕ)
65 simprr 796 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ¬ 𝑧𝑦)
66 simpll3 1102 . . . . . . . . . . . . . . . . . 18 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → 𝐹:ℕ⟶ℕ)
67 simpl 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ⊆ ℕ ∧ {𝑧} ⊆ ℕ) → 𝑦 ⊆ ℕ)
6857, 67sylbir 225 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ)
69683ad2ant1 1082 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑦 ⊆ ℕ)
7069adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ⊆ ℕ)
7170sselda 3603 . . . . . . . . . . . . . . . . . 18 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → 𝑚 ∈ ℕ)
7266, 71ffvelrnd 6360 . . . . . . . . . . . . . . . . 17 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℕ)
7372nncnd 11036 . . . . . . . . . . . . . . . 16 (((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑚𝑦) → (𝐹𝑚) ∈ ℂ)
74 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑧 → (𝐹𝑚) = (𝐹𝑧))
75 simpr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝐹:ℕ⟶ℕ)
7662adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑧 ∈ ℕ)
7775, 76ffvelrnd 6360 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹𝑧) ∈ ℕ)
78773adant2 1080 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹𝑧) ∈ ℕ)
7978adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹𝑧) ∈ ℕ)
8079nncnd 11036 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹𝑧) ∈ ℂ)
8154, 55, 56, 64, 65, 73, 74, 80fprodsplitsn 14720 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) = (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))
8281oveq1d 6665 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = ((∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) gcd 𝑁))
8356, 72fprodnncl 14685 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ)
8483nnzd 11481 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ∏𝑚𝑦 (𝐹𝑚) ∈ ℤ)
8579nnzd 11481 . . . . . . . . . . . . . . . 16 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹𝑧) ∈ ℤ)
8684, 85zmulcld 11488 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∈ ℤ)
87483ad2ant2 1083 . . . . . . . . . . . . . . . 16 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → 𝑁 ∈ ℤ)
8887adantr 481 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑁 ∈ ℤ)
89 gcdcom 15235 . . . . . . . . . . . . . . 15 (((∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))))
9086, 88, 89syl2anc 693 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))))
9182, 90eqtrd 2656 . . . . . . . . . . . . 13 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))))
9291ex 450 . . . . . . . . . . . 12 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))))
93923ad2ant1 1082 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))))
9493com12 32 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))))
9594adantr 481 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧)))))
9695imp 445 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))))
97 simpl2 1065 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑁 ∈ ℕ)
9897, 83, 793jca 1242 . . . . . . . . . . . . . 14 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ))
9998ex 450 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ)))
100993ad2ant1 1082 . . . . . . . . . . . 12 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ)))
101100com12 32 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ)))
102101adantr 481 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ)))
103102imp 445 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ))
104 gcdcom 15235 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℤ) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁))
10588, 84, 104syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁))
106105ex 450 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁)))
1071063ad2ant1 1082 . . . . . . . . . . . . 13 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁)))
108107com12 32 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁)))
109108adantr 481 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁)))
110109imp 445 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁))
11168a1i 11 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝑦 ∪ {𝑧}) ⊆ ℕ → 𝑦 ⊆ ℕ))
112 idd 24 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝑁 ∈ ℕ → 𝑁 ∈ ℕ))
113 idd 24 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝐹:ℕ⟶ℕ → 𝐹:ℕ⟶ℕ))
114111, 112, 1133anim123d 1406 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)))
115 ssun1 3776 . . . . . . . . . . . . . 14 𝑦 ⊆ (𝑦 ∪ {𝑧})
116 ssralv 3666 . . . . . . . . . . . . . 14 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 → ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1))
117115, 116mp1i 13 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 → ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1))
118 ssralv 3666 . . . . . . . . . . . . . . 15 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
119115, 118mp1i 13 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
120115a1i 11 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑚𝑦) → 𝑦 ⊆ (𝑦 ∪ {𝑧}))
121120ssdifd 3746 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑚𝑦) → (𝑦 ∖ {𝑚}) ⊆ ((𝑦 ∪ {𝑧}) ∖ {𝑚}))
122 ssralv 3666 . . . . . . . . . . . . . . . 16 ((𝑦 ∖ {𝑚}) ⊆ ((𝑦 ∪ {𝑧}) ∖ {𝑚}) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
123121, 122syl 17 . . . . . . . . . . . . . . 15 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ 𝑚𝑦) → (∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
124123ralimdva 2962 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑚𝑦𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
125119, 124syld 47 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1))
126114, 117, 1253anim123d 1406 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → ((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)))
127126imim1d 82 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)))
128127imp31 448 . . . . . . . . . 10 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)
129110, 128eqtrd 2656 . . . . . . . . 9 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = 1)
130 rpmulgcd 15275 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ∏𝑚𝑦 (𝐹𝑚) ∈ ℕ ∧ (𝐹𝑧) ∈ ℕ) ∧ (𝑁 gcd ∏𝑚𝑦 (𝐹𝑚)) = 1) → (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))) = (𝑁 gcd (𝐹𝑧)))
131103, 129, 130syl2anc 693 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 gcd (∏𝑚𝑦 (𝐹𝑚) · (𝐹𝑧))) = (𝑁 gcd (𝐹𝑧)))
132 vsnid 4209 . . . . . . . . . . . . . . 15 𝑧 ∈ {𝑧}
133132olci 406 . . . . . . . . . . . . . 14 (𝑧𝑦𝑧 ∈ {𝑧})
134 elun 3753 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧𝑦𝑧 ∈ {𝑧}))
135133, 134mpbir 221 . . . . . . . . . . . . 13 𝑧 ∈ (𝑦 ∪ {𝑧})
13674oveq1d 6665 . . . . . . . . . . . . . . 15 (𝑚 = 𝑧 → ((𝐹𝑚) gcd 𝑁) = ((𝐹𝑧) gcd 𝑁))
137136eqeq1d 2624 . . . . . . . . . . . . . 14 (𝑚 = 𝑧 → (((𝐹𝑚) gcd 𝑁) = 1 ↔ ((𝐹𝑧) gcd 𝑁) = 1))
138137rspcv 3305 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 → ((𝐹𝑧) gcd 𝑁) = 1))
139135, 138mp1i 13 . . . . . . . . . . . 12 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 → ((𝐹𝑧) gcd 𝑁) = 1))
140139imp 445 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1) → ((𝐹𝑧) gcd 𝑁) = 1)
14178nnzd 11481 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝐹𝑧) ∈ ℤ)
142 gcdcom 15235 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (𝐹𝑧) ∈ ℤ) → (𝑁 gcd (𝐹𝑧)) = ((𝐹𝑧) gcd 𝑁))
14387, 141, 142syl2anc 693 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (𝑁 gcd (𝐹𝑧)) = ((𝐹𝑧) gcd 𝑁))
144143eqeq1d 2624 . . . . . . . . . . . 12 (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → ((𝑁 gcd (𝐹𝑧)) = 1 ↔ ((𝐹𝑧) gcd 𝑁) = 1))
145144adantr 481 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1) → ((𝑁 gcd (𝐹𝑧)) = 1 ↔ ((𝐹𝑧) gcd 𝑁) = 1))
146140, 145mpbird 247 . . . . . . . . . 10 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1) → (𝑁 gcd (𝐹𝑧)) = 1)
1471463adant3 1081 . . . . . . . . 9 ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (𝑁 gcd (𝐹𝑧)) = 1)
148147adantl 482 . . . . . . . 8 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (𝑁 gcd (𝐹𝑧)) = 1)
14996, 131, 1483eqtrd 2660 . . . . . . 7 ((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1)) ∧ (((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1)) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = 1)
150149exp31 630 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((((𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑦 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑦𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑦 (𝐹𝑚) gcd 𝑁) = 1) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹𝑚) gcd 𝑁) = 1)))
15111, 22, 33, 44, 53, 150findcard2s 8201 . . . . 5 (𝑀 ∈ Fin → (((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 ∧ ∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1) → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))
1521513expd 1284 . . . 4 (𝑀 ∈ Fin → ((𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) → (∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))))
1531523expd 1284 . . 3 (𝑀 ∈ Fin → (𝑀 ⊆ ℕ → (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ → (∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))))))
1541533imp 1256 . 2 ((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) → (𝐹:ℕ⟶ℕ → (∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1 → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))))
1551543imp 1256 1 (((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚𝑀 ((𝐹𝑚) gcd 𝑁) = 1) → (∀𝑚𝑀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹𝑚) gcd (𝐹𝑛)) = 1 → (∏𝑚𝑀 (𝐹𝑚) gcd 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cdif 3571  cun 3572  wss 3574  c0 3915  {csn 4177  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  1c1 9937   · cmul 9941  cn 11020  cz 11377  cprod 14635   gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  coprmproddvdslem  15376
  Copyright terms: Public domain W3C validator