![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cos1bnd | Structured version Visualization version GIF version |
Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
Ref | Expression |
---|---|
cos1bnd | ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq1 12958 | . . . . . . . 8 ⊢ (1↑2) = 1 | |
2 | 1 | oveq1i 6660 | . . . . . . 7 ⊢ ((1↑2) / 3) = (1 / 3) |
3 | 2 | oveq2i 6661 | . . . . . 6 ⊢ (2 · ((1↑2) / 3)) = (2 · (1 / 3)) |
4 | 2cn 11091 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
5 | 3cn 11095 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
6 | 3ne0 11115 | . . . . . . 7 ⊢ 3 ≠ 0 | |
7 | 4, 5, 6 | divreci 10770 | . . . . . 6 ⊢ (2 / 3) = (2 · (1 / 3)) |
8 | 3, 7 | eqtr4i 2647 | . . . . 5 ⊢ (2 · ((1↑2) / 3)) = (2 / 3) |
9 | 8 | oveq2i 6661 | . . . 4 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 − (2 / 3)) |
10 | ax-1cn 9994 | . . . . 5 ⊢ 1 ∈ ℂ | |
11 | 4, 5, 6 | divcli 10767 | . . . . 5 ⊢ (2 / 3) ∈ ℂ |
12 | 5, 6 | reccli 10755 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
13 | df-3 11080 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
14 | 13 | oveq1i 6660 | . . . . . 6 ⊢ (3 / 3) = ((2 + 1) / 3) |
15 | 5, 6 | dividi 10758 | . . . . . 6 ⊢ (3 / 3) = 1 |
16 | 4, 10, 5, 6 | divdiri 10782 | . . . . . 6 ⊢ ((2 + 1) / 3) = ((2 / 3) + (1 / 3)) |
17 | 14, 15, 16 | 3eqtr3ri 2653 | . . . . 5 ⊢ ((2 / 3) + (1 / 3)) = 1 |
18 | 10, 11, 12, 17 | subaddrii 10370 | . . . 4 ⊢ (1 − (2 / 3)) = (1 / 3) |
19 | 9, 18 | eqtri 2644 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) = (1 / 3) |
20 | 1re 10039 | . . . . 5 ⊢ 1 ∈ ℝ | |
21 | 0lt1 10550 | . . . . 5 ⊢ 0 < 1 | |
22 | 1le1 10655 | . . . . 5 ⊢ 1 ≤ 1 | |
23 | 0xr 10086 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
24 | elioc2 12236 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1))) | |
25 | 23, 20, 24 | mp2an 708 | . . . . . 6 ⊢ (1 ∈ (0(,]1) ↔ (1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1)) |
26 | cos01bnd 14916 | . . . . . 6 ⊢ (1 ∈ (0(,]1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) | |
27 | 25, 26 | sylbir 225 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 0 < 1 ∧ 1 ≤ 1) → ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3)))) |
28 | 20, 21, 22, 27 | mp3an 1424 | . . . 4 ⊢ ((1 − (2 · ((1↑2) / 3))) < (cos‘1) ∧ (cos‘1) < (1 − ((1↑2) / 3))) |
29 | 28 | simpli 474 | . . 3 ⊢ (1 − (2 · ((1↑2) / 3))) < (cos‘1) |
30 | 19, 29 | eqbrtrri 4676 | . 2 ⊢ (1 / 3) < (cos‘1) |
31 | 28 | simpri 478 | . . 3 ⊢ (cos‘1) < (1 − ((1↑2) / 3)) |
32 | 2 | oveq2i 6661 | . . . 4 ⊢ (1 − ((1↑2) / 3)) = (1 − (1 / 3)) |
33 | 10, 12, 11 | subadd2i 10369 | . . . . 5 ⊢ ((1 − (1 / 3)) = (2 / 3) ↔ ((2 / 3) + (1 / 3)) = 1) |
34 | 17, 33 | mpbir 221 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
35 | 32, 34 | eqtri 2644 | . . 3 ⊢ (1 − ((1↑2) / 3)) = (2 / 3) |
36 | 31, 35 | breqtri 4678 | . 2 ⊢ (cos‘1) < (2 / 3) |
37 | 30, 36 | pm3.2i 471 | 1 ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 · cmul 9941 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 − cmin 10266 / cdiv 10684 2c2 11070 3c3 11071 (,]cioc 12176 ↑cexp 12860 cosccos 14795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-ioc 12180 df-ico 12181 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-fac 13061 df-hash 13118 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-ef 14798 df-cos 14801 |
This theorem is referenced by: cos2bnd 14918 |
Copyright terms: Public domain | W3C validator |