MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshf1 Structured version   Visualization version   GIF version

Theorem cshf1 13556
Description: Cyclically shifting a word which contains a symbol at most once results in a word which contains a symbol at most once. (Contributed by AV, 14-Mar-2021.)
Assertion
Ref Expression
cshf1 ((𝐹:(0..^(#‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(#‘𝐹))–1-1𝐴)

Proof of Theorem cshf1
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 6101 . . . . 5 (𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹:(0..^(#‘𝐹))⟶𝐴)
2 iswrdi 13309 . . . . 5 (𝐹:(0..^(#‘𝐹))⟶𝐴𝐹 ∈ Word 𝐴)
31, 2syl 17 . . . 4 (𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴)
4 cshwf 13546 . . . . . . . . 9 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐹 cyclShift 𝑆):(0..^(#‘𝐹))⟶𝐴)
543adant1 1079 . . . . . . . 8 ((𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐹 cyclShift 𝑆):(0..^(#‘𝐹))⟶𝐴)
65adantr 481 . . . . . . 7 (((𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐹 cyclShift 𝑆):(0..^(#‘𝐹))⟶𝐴)
7 feq1 6026 . . . . . . . 8 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺:(0..^(#‘𝐹))⟶𝐴 ↔ (𝐹 cyclShift 𝑆):(0..^(#‘𝐹))⟶𝐴))
87adantl 482 . . . . . . 7 (((𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐺:(0..^(#‘𝐹))⟶𝐴 ↔ (𝐹 cyclShift 𝑆):(0..^(#‘𝐹))⟶𝐴))
96, 8mpbird 247 . . . . . 6 (((𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(#‘𝐹))⟶𝐴)
10 dff13 6512 . . . . . . . 8 (𝐹:(0..^(#‘𝐹))–1-1𝐴 ↔ (𝐹:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
11 fveq1 6190 . . . . . . . . . . . . . . . . . 18 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺𝑖) = ((𝐹 cyclShift 𝑆)‘𝑖))
12113ad2ant1 1082 . . . . . . . . . . . . . . . . 17 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐺𝑖) = ((𝐹 cyclShift 𝑆)‘𝑖))
1312adantr 481 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (𝐺𝑖) = ((𝐹 cyclShift 𝑆)‘𝑖))
14 cshwidxmod 13549 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ 𝑖 ∈ (0..^(#‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))))
15143expia 1267 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑖 ∈ (0..^(#‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹)))))
16153adant1 1079 . . . . . . . . . . . . . . . . . . 19 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑖 ∈ (0..^(#‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹)))))
1716com12 32 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0..^(#‘𝐹)) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹)))))
1817adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹)))))
1918impcom 446 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))))
2013, 19eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (𝐺𝑖) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))))
21 fveq1 6190 . . . . . . . . . . . . . . . . . 18 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗))
22213ad2ant1 1082 . . . . . . . . . . . . . . . . 17 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐺𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗))
2322adantr 481 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (𝐺𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗))
24 cshwidxmod 13549 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))))
25243expia 1267 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑗 ∈ (0..^(#‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹)))))
26253adant1 1079 . . . . . . . . . . . . . . . . . 18 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑗 ∈ (0..^(#‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹)))))
2726adantld 483 . . . . . . . . . . . . . . . . 17 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹)))))
2827imp 445 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))))
2923, 28eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (𝐺𝑗) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))))
3020, 29eqeq12d 2637 . . . . . . . . . . . . . 14 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝐺𝑖) = (𝐺𝑗) ↔ (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹)))))
3130adantlr 751 . . . . . . . . . . . . 13 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝐺𝑖) = (𝐺𝑗) ↔ (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹)))))
32 elfzo0 12508 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^(#‘𝐹)) ↔ (𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ ∧ 𝑖 < (#‘𝐹)))
33 nn0z 11400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
3433adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → 𝑖 ∈ ℤ)
3534adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → 𝑖 ∈ ℤ)
36 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → 𝑆 ∈ ℤ)
3735, 36zaddcld 11486 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → (𝑖 + 𝑆) ∈ ℤ)
38 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → (#‘𝐹) ∈ ℕ)
3938adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → (#‘𝐹) ∈ ℕ)
4037, 39jca 554 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ))
4140ex 450 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑆 ∈ ℤ → ((𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
42413ad2ant3 1084 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
4342com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
44433adant3 1081 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ ∧ 𝑖 < (#‘𝐹)) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
4532, 44sylbi 207 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^(#‘𝐹)) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
4645adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
4746impcom 446 . . . . . . . . . . . . . . . . . 18 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ))
48 zmodfzo 12693 . . . . . . . . . . . . . . . . . 18 (((𝑖 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ) → ((𝑖 + 𝑆) mod (#‘𝐹)) ∈ (0..^(#‘𝐹)))
4947, 48syl 17 . . . . . . . . . . . . . . . . 17 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝑖 + 𝑆) mod (#‘𝐹)) ∈ (0..^(#‘𝐹)))
50 elfzo0 12508 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0..^(#‘𝐹)) ↔ (𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ ∧ 𝑗 < (#‘𝐹)))
51 nn0z 11400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
5251adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → 𝑗 ∈ ℤ)
5352adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → 𝑗 ∈ ℤ)
54 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → 𝑆 ∈ ℤ)
5553, 54zaddcld 11486 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → (𝑗 + 𝑆) ∈ ℤ)
56 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → (#‘𝐹) ∈ ℕ)
5756adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → (#‘𝐹) ∈ ℕ)
5855, 57jca 554 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ)) → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ))
5958expcom 451 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ) → (𝑆 ∈ ℤ → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
60593adant3 1081 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ ∧ 𝑗 < (#‘𝐹)) → (𝑆 ∈ ℤ → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
6150, 60sylbi 207 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^(#‘𝐹)) → (𝑆 ∈ ℤ → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
6261com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ ℤ → (𝑗 ∈ (0..^(#‘𝐹)) → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
63623ad2ant3 1084 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑗 ∈ (0..^(#‘𝐹)) → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
6463adantld 483 . . . . . . . . . . . . . . . . . . 19 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ)))
6564imp 445 . . . . . . . . . . . . . . . . . 18 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ))
66 zmodfzo 12693 . . . . . . . . . . . . . . . . . 18 (((𝑗 + 𝑆) ∈ ℤ ∧ (#‘𝐹) ∈ ℕ) → ((𝑗 + 𝑆) mod (#‘𝐹)) ∈ (0..^(#‘𝐹)))
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝑗 + 𝑆) mod (#‘𝐹)) ∈ (0..^(#‘𝐹)))
68 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ((𝑖 + 𝑆) mod (#‘𝐹)) → (𝐹𝑥) = (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))))
6968eqeq1d 2624 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑖 + 𝑆) mod (#‘𝐹)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹𝑦)))
70 eqeq1 2626 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑖 + 𝑆) mod (#‘𝐹)) → (𝑥 = 𝑦 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = 𝑦))
7169, 70imbi12d 334 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑖 + 𝑆) mod (#‘𝐹)) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹𝑦) → ((𝑖 + 𝑆) mod (#‘𝐹)) = 𝑦)))
72 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((𝑗 + 𝑆) mod (#‘𝐹)) → (𝐹𝑦) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))))
7372eqeq2d 2632 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝑗 + 𝑆) mod (#‘𝐹)) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹𝑦) ↔ (𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹)))))
74 eqeq2 2633 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝑗 + 𝑆) mod (#‘𝐹)) → (((𝑖 + 𝑆) mod (#‘𝐹)) = 𝑦 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹))))
7573, 74imbi12d 334 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑗 + 𝑆) mod (#‘𝐹)) → (((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹𝑦) → ((𝑖 + 𝑆) mod (#‘𝐹)) = 𝑦) ↔ ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))))
7671, 75rspc2v 3322 . . . . . . . . . . . . . . . . 17 ((((𝑖 + 𝑆) mod (#‘𝐹)) ∈ (0..^(#‘𝐹)) ∧ ((𝑗 + 𝑆) mod (#‘𝐹)) ∈ (0..^(#‘𝐹))) → (∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))))
7749, 67, 76syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))))
78 simpr 477 . . . . . . . . . . . . . . . . . 18 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) ∧ ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹))))
79 addmodlteq 12745 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)) ∧ 𝑆 ∈ ℤ) → (((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)) ↔ 𝑖 = 𝑗))
80793expa 1265 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) ∧ 𝑆 ∈ ℤ) → (((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)) ↔ 𝑖 = 𝑗))
8180ancoms 469 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)) ↔ 𝑖 = 𝑗))
8281bicomd 213 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹))))
8382ex 450 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ ℤ → ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))))
84833ad2ant3 1084 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))))
8584imp 445 . . . . . . . . . . . . . . . . . . 19 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹))))
8685adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) ∧ ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹))))
8778, 86sylibrd 249 . . . . . . . . . . . . . . . . 17 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) ∧ ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹)))) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → 𝑖 = 𝑗))
8887ex 450 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝑖 + 𝑆) mod (#‘𝐹)) = ((𝑗 + 𝑆) mod (#‘𝐹))) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → 𝑖 = 𝑗)))
8977, 88syld 47 . . . . . . . . . . . . . . 15 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → (∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → 𝑖 = 𝑗)))
9089impancom 456 . . . . . . . . . . . . . 14 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) → ((𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹))) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → 𝑖 = 𝑗)))
9190imp 445 . . . . . . . . . . . . 13 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝐹‘((𝑖 + 𝑆) mod (#‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (#‘𝐹))) → 𝑖 = 𝑗))
9231, 91sylbid 230 . . . . . . . . . . . 12 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝑖 ∈ (0..^(#‘𝐹)) ∧ 𝑗 ∈ (0..^(#‘𝐹)))) → ((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
9392ralrimivva 2971 . . . . . . . . . . 11 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) → ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
94933exp1 1283 . . . . . . . . . 10 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
9594com14 96 . . . . . . . . 9 (∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
9695adantl 482 . . . . . . . 8 ((𝐹:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑥 ∈ (0..^(#‘𝐹))∀𝑦 ∈ (0..^(#‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
9710, 96sylbi 207 . . . . . . 7 (𝐹:(0..^(#‘𝐹))–1-1𝐴 → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
98973imp1 1280 . . . . . 6 (((𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
999, 98jca 554 . . . . 5 (((𝐹:(0..^(#‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐺:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
100993exp1 1283 . . . 4 (𝐹:(0..^(#‘𝐹))–1-1𝐴 → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))))))
1013, 100mpd 15 . . 3 (𝐹:(0..^(#‘𝐹))–1-1𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
1021013imp 1256 . 2 ((𝐹:(0..^(#‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐺:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
103 dff13 6512 . 2 (𝐺:(0..^(#‘𝐹))–1-1𝐴 ↔ (𝐺:(0..^(#‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))∀𝑗 ∈ (0..^(#‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
104102, 103sylibr 224 1 ((𝐹:(0..^(#‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(#‘𝐹))–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  0cc0 9936   + caddc 9939   < clt 10074  cn 11020  0cn0 11292  cz 11377  ..^cfzo 12465   mod cmo 12668  #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  cshinj  13557
  Copyright terms: Public domain W3C validator