| Step | Hyp | Ref
| Expression |
| 1 | | dgrle.1 |
. 2
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 2 | | dgrle.2 |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 3 | | dgrle.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
| 4 | | dgrle.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) |
| 5 | 1, 2, 3, 4 | coeeq2 23998 |
. . . . . . . . 9
⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |
| 6 | 5 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬
𝑚 ≤ 𝑁) → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |
| 7 | 6 | fveq1d 6193 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬
𝑚 ≤ 𝑁) → ((coeff‘𝐹)‘𝑚) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚)) |
| 8 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝑚 |
| 9 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 ¬ 𝑚 ≤ 𝑁 |
| 10 | | nffvmpt1 6199 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) |
| 11 | 10 | nfeq1 2778 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘((𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0 |
| 12 | 9, 11 | nfim 1825 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
| 13 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → (𝑘 ≤ 𝑁 ↔ 𝑚 ≤ 𝑁)) |
| 14 | 13 | notbid 308 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (¬ 𝑘 ≤ 𝑁 ↔ ¬ 𝑚 ≤ 𝑁)) |
| 15 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚)) |
| 16 | 15 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0)) |
| 17 | 14, 16 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → ((¬ 𝑘 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0) ↔ (¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0))) |
| 18 | | iffalse 4095 |
. . . . . . . . . . . . 13
⊢ (¬
𝑘 ≤ 𝑁 → if(𝑘 ≤ 𝑁, 𝐴, 0) = 0) |
| 19 | 18 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (¬
𝑘 ≤ 𝑁 → ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = ( I ‘0)) |
| 20 | | 0cn 10032 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℂ |
| 21 | | fvi 6255 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℂ → ( I ‘0) = 0) |
| 22 | 20, 21 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ( I
‘0) = 0 |
| 23 | 19, 22 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (¬
𝑘 ≤ 𝑁 → ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = 0) |
| 24 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) |
| 25 | 24 | fvmpt2i 6290 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0))) |
| 26 | 25 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (((𝑘 ∈
ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = 0)) |
| 27 | 23, 26 | syl5ibr 236 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (¬ 𝑘 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0)) |
| 28 | 8, 12, 17, 27 | vtoclgaf 3271 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ (¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0)) |
| 29 | 28 | imp 445 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ ¬ 𝑚 ≤ 𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
| 30 | 29 | adantll 750 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬
𝑚 ≤ 𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
| 31 | 7, 30 | eqtrd 2656 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬
𝑚 ≤ 𝑁) → ((coeff‘𝐹)‘𝑚) = 0) |
| 32 | 31 | ex 450 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (¬
𝑚 ≤ 𝑁 → ((coeff‘𝐹)‘𝑚) = 0)) |
| 33 | 32 | necon1ad 2811 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
| 34 | 33 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑚 ∈ ℕ0
(((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
| 35 | | eqid 2622 |
. . . . . 6
⊢
(coeff‘𝐹) =
(coeff‘𝐹) |
| 36 | 35 | coef3 23988 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ) |
| 37 | 1, 36 | syl 17 |
. . . 4
⊢ (𝜑 → (coeff‘𝐹):ℕ0⟶ℂ) |
| 38 | | plyco0 23948 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (coeff‘𝐹):ℕ0⟶ℂ) →
(((coeff‘𝐹) “
(ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0
(((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) |
| 39 | 2, 37, 38 | syl2anc 693 |
. . 3
⊢ (𝜑 → (((coeff‘𝐹) “
(ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0
(((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) |
| 40 | 34, 39 | mpbird 247 |
. 2
⊢ (𝜑 → ((coeff‘𝐹) “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 41 | | eqid 2622 |
. . 3
⊢
(deg‘𝐹) =
(deg‘𝐹) |
| 42 | 35, 41 | dgrlb 23992 |
. 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧
((coeff‘𝐹) “
(ℤ≥‘(𝑁 + 1))) = {0}) → (deg‘𝐹) ≤ 𝑁) |
| 43 | 1, 2, 40, 42 | syl3anc 1326 |
1
⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |