MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeeq2 Structured version   Visualization version   GIF version

Theorem coeeq2 23998
Description: Compute the coefficient function given a sum expression for the polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgrle.1 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrle.2 (𝜑𝑁 ∈ ℕ0)
dgrle.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
dgrle.4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
Assertion
Ref Expression
coeeq2 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem coeeq2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dgrle.1 . 2 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgrle.2 . 2 (𝜑𝑁 ∈ ℕ0)
3 simpll 790 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝜑)
4 simpr 477 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘𝑁)
5 simplr 792 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ ℕ0)
6 nn0uz 11722 . . . . . . . 8 0 = (ℤ‘0)
75, 6syl6eleq 2711 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ (ℤ‘0))
82nn0zd 11480 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
98ad2antrr 762 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑁 ∈ ℤ)
10 elfz5 12334 . . . . . . 7 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
117, 9, 10syl2anc 693 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
124, 11mpbird 247 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝑘 ∈ (0...𝑁))
13 dgrle.3 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
143, 12, 13syl2anc 693 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘𝑁) → 𝐴 ∈ ℂ)
15 0cnd 10033 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘𝑁) → 0 ∈ ℂ)
1614, 15ifclda 4120 . . 3 ((𝜑𝑘 ∈ ℕ0) → if(𝑘𝑁, 𝐴, 0) ∈ ℂ)
17 eqid 2622 . . 3 (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))
1816, 17fmptd 6385 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)):ℕ0⟶ℂ)
19 simpr 477 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
2017fvmpt2 6291 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ if(𝑘𝑁, 𝐴, 0) ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
2119, 16, 20syl2anc 693 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
2221neeq1d 2853 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ if(𝑘𝑁, 𝐴, 0) ≠ 0))
23 iffalse 4095 . . . . . . 7 𝑘𝑁 → if(𝑘𝑁, 𝐴, 0) = 0)
2423necon1ai 2821 . . . . . 6 (if(𝑘𝑁, 𝐴, 0) ≠ 0 → 𝑘𝑁)
2522, 24syl6bi 243 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
2625ralrimiva 2966 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁))
27 nfv 1843 . . . . 5 𝑚(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁)
28 nffvmpt1 6199 . . . . . . 7 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚)
29 nfcv 2764 . . . . . . 7 𝑘0
3028, 29nfne 2894 . . . . . 6 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0
31 nfv 1843 . . . . . 6 𝑘 𝑚𝑁
3230, 31nfim 1825 . . . . 5 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)
33 fveq2 6191 . . . . . . 7 (𝑘 = 𝑚 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚))
3433neeq1d 2853 . . . . . 6 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0))
35 breq1 4656 . . . . . 6 (𝑘 = 𝑚 → (𝑘𝑁𝑚𝑁))
3634, 35imbi12d 334 . . . . 5 (𝑘 = 𝑚 → ((((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁) ↔ (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
3727, 32, 36cbvral 3167 . . . 4 (∀𝑘 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) ≠ 0 → 𝑘𝑁) ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁))
3826, 37sylib 208 . . 3 (𝜑 → ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁))
39 plyco0 23948 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)):ℕ0⟶ℂ) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
402, 18, 39syl2anc 693 . . 3 (𝜑 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) ≠ 0 → 𝑚𝑁)))
4138, 40mpbird 247 . 2 (𝜑 → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)) “ (ℤ‘(𝑁 + 1))) = {0})
42 dgrle.4 . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
43 nfcv 2764 . . . . . 6 𝑚(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘))
44 nfcv 2764 . . . . . . 7 𝑘 ·
45 nfcv 2764 . . . . . . 7 𝑘(𝑧𝑚)
4628, 44, 45nfov 6676 . . . . . 6 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))
47 oveq2 6658 . . . . . . 7 (𝑘 = 𝑚 → (𝑧𝑘) = (𝑧𝑚))
4833, 47oveq12d 6668 . . . . . 6 (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚)))
4943, 46, 48cbvsumi 14427 . . . . 5 Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))
50 elfznn0 12433 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
5150adantl 482 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
52 elfzle2 12345 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → 𝑘𝑁)
5352adantl 482 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘𝑁)
5453iftrued 4094 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘𝑁, 𝐴, 0) = 𝐴)
5513adantlr 751 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
5654, 55eqeltrd 2701 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘𝑁, 𝐴, 0) ∈ ℂ)
5751, 56, 20syl2anc 693 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = if(𝑘𝑁, 𝐴, 0))
5857, 54eqtrd 2656 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) = 𝐴)
5958oveq1d 6665 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (𝐴 · (𝑧𝑘)))
6059sumeq2dv 14433 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
6149, 60syl5eqr 2670 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
6261mpteq2dva 4744 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
6342, 62eqtr4d 2659 . 2 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0))‘𝑚) · (𝑧𝑚))))
641, 2, 18, 41, 63coeeq 23983 1 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘𝑁, 𝐴, 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  cexp 12860  Σcsu 14416  Polycply 23940  coeffccoe 23942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946
This theorem is referenced by:  dgrle  23999  aareccl  24081  elaa2lem  40450
  Copyright terms: Public domain W3C validator