MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem4 Structured version   Visualization version   Unicode version

Theorem divalglem4 15119
Description: Lemma for divalg 15126. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem0.1  |-  N  e.  ZZ
divalglem0.2  |-  D  e.  ZZ
divalglem1.3  |-  D  =/=  0
divalglem2.4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
Assertion
Ref Expression
divalglem4  |-  S  =  { r  e.  NN0  |  E. q  e.  ZZ  N  =  ( (
q  x.  D )  +  r ) }
Distinct variable groups:    D, r    N, r    D, q, r    N, q
Allowed substitution hints:    S( r, q)

Proof of Theorem divalglem4
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 divalglem0.2 . . . . . 6  |-  D  e.  ZZ
2 divalglem0.1 . . . . . . 7  |-  N  e.  ZZ
3 nn0z 11400 . . . . . . 7  |-  ( z  e.  NN0  ->  z  e.  ZZ )
4 zsubcl 11419 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  z  e.  ZZ )  ->  ( N  -  z
)  e.  ZZ )
52, 3, 4sylancr 695 . . . . . 6  |-  ( z  e.  NN0  ->  ( N  -  z )  e.  ZZ )
6 divides 14985 . . . . . 6  |-  ( ( D  e.  ZZ  /\  ( N  -  z
)  e.  ZZ )  ->  ( D  ||  ( N  -  z
)  <->  E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  z ) ) )
71, 5, 6sylancr 695 . . . . 5  |-  ( z  e.  NN0  ->  ( D 
||  ( N  -  z )  <->  E. q  e.  ZZ  ( q  x.  D )  =  ( N  -  z ) ) )
8 nn0cn 11302 . . . . . . . 8  |-  ( z  e.  NN0  ->  z  e.  CC )
9 zmulcl 11426 . . . . . . . . . 10  |-  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  ( q  x.  D
)  e.  ZZ )
101, 9mpan2 707 . . . . . . . . 9  |-  ( q  e.  ZZ  ->  (
q  x.  D )  e.  ZZ )
1110zcnd 11483 . . . . . . . 8  |-  ( q  e.  ZZ  ->  (
q  x.  D )  e.  CC )
12 zcn 11382 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
132, 12ax-mp 5 . . . . . . . . . 10  |-  N  e.  CC
14 subadd 10284 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  z  e.  CC  /\  (
q  x.  D )  e.  CC )  -> 
( ( N  -  z )  =  ( q  x.  D )  <-> 
( z  +  ( q  x.  D ) )  =  N ) )
1513, 14mp3an1 1411 . . . . . . . . 9  |-  ( ( z  e.  CC  /\  ( q  x.  D
)  e.  CC )  ->  ( ( N  -  z )  =  ( q  x.  D
)  <->  ( z  +  ( q  x.  D
) )  =  N ) )
16 addcom 10222 . . . . . . . . . 10  |-  ( ( z  e.  CC  /\  ( q  x.  D
)  e.  CC )  ->  ( z  +  ( q  x.  D
) )  =  ( ( q  x.  D
)  +  z ) )
1716eqeq1d 2624 . . . . . . . . 9  |-  ( ( z  e.  CC  /\  ( q  x.  D
)  e.  CC )  ->  ( ( z  +  ( q  x.  D ) )  =  N  <->  ( ( q  x.  D )  +  z )  =  N ) )
1815, 17bitrd 268 . . . . . . . 8  |-  ( ( z  e.  CC  /\  ( q  x.  D
)  e.  CC )  ->  ( ( N  -  z )  =  ( q  x.  D
)  <->  ( ( q  x.  D )  +  z )  =  N ) )
198, 11, 18syl2an 494 . . . . . . 7  |-  ( ( z  e.  NN0  /\  q  e.  ZZ )  ->  ( ( N  -  z )  =  ( q  x.  D )  <-> 
( ( q  x.  D )  +  z )  =  N ) )
20 eqcom 2629 . . . . . . 7  |-  ( ( N  -  z )  =  ( q  x.  D )  <->  ( q  x.  D )  =  ( N  -  z ) )
21 eqcom 2629 . . . . . . 7  |-  ( ( ( q  x.  D
)  +  z )  =  N  <->  N  =  ( ( q  x.  D )  +  z ) )
2219, 20, 213bitr3g 302 . . . . . 6  |-  ( ( z  e.  NN0  /\  q  e.  ZZ )  ->  ( ( q  x.  D )  =  ( N  -  z )  <-> 
N  =  ( ( q  x.  D )  +  z ) ) )
2322rexbidva 3049 . . . . 5  |-  ( z  e.  NN0  ->  ( E. q  e.  ZZ  (
q  x.  D )  =  ( N  -  z )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  z ) ) )
247, 23bitrd 268 . . . 4  |-  ( z  e.  NN0  ->  ( D 
||  ( N  -  z )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  z ) ) )
2524pm5.32i 669 . . 3  |-  ( ( z  e.  NN0  /\  D  ||  ( N  -  z ) )  <->  ( z  e.  NN0  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  z ) ) )
26 oveq2 6658 . . . . 5  |-  ( r  =  z  ->  ( N  -  r )  =  ( N  -  z ) )
2726breq2d 4665 . . . 4  |-  ( r  =  z  ->  ( D  ||  ( N  -  r )  <->  D  ||  ( N  -  z )
) )
28 divalglem2.4 . . . 4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
2927, 28elrab2 3366 . . 3  |-  ( z  e.  S  <->  ( z  e.  NN0  /\  D  ||  ( N  -  z
) ) )
30 oveq2 6658 . . . . . 6  |-  ( r  =  z  ->  (
( q  x.  D
)  +  r )  =  ( ( q  x.  D )  +  z ) )
3130eqeq2d 2632 . . . . 5  |-  ( r  =  z  ->  ( N  =  ( (
q  x.  D )  +  r )  <->  N  =  ( ( q  x.  D )  +  z ) ) )
3231rexbidv 3052 . . . 4  |-  ( r  =  z  ->  ( E. q  e.  ZZ  N  =  ( (
q  x.  D )  +  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  z ) ) )
3332elrab 3363 . . 3  |-  ( z  e.  { r  e. 
NN0  |  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) }  <->  ( z  e. 
NN0  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  z ) ) )
3425, 29, 333bitr4i 292 . 2  |-  ( z  e.  S  <->  z  e.  { r  e.  NN0  |  E. q  e.  ZZ  N  =  ( (
q  x.  D )  +  r ) } )
3534eqriv 2619 1  |-  S  =  { r  e.  NN0  |  E. q  e.  ZZ  N  =  ( (
q  x.  D )  +  r ) }
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   class class class wbr 4653  (class class class)co 6650   CCcc 9934   0cc0 9936    + caddc 9939    x. cmul 9941    - cmin 10266   NN0cn0 11292   ZZcz 11377    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-dvds 14984
This theorem is referenced by:  divalglem10  15125
  Copyright terms: Public domain W3C validator