![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvh0g | Structured version Visualization version GIF version |
Description: The zero vector of vector space H has the zero translation as its first member and the zero trace-preserving endomorphism as the second. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
dvh0g.b | ⊢ 𝐵 = (Base‘𝐾) |
dvh0g.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvh0g.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvh0g.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dvh0g.z | ⊢ 0 = (0g‘𝑈) |
dvh0g.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
dvh0g | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dvh0g.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | dvh0g.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dvh0g.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | idltrn 35436 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
6 | eqid 2622 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
7 | dvh0g.o | . . . . 5 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
8 | 2, 3, 4, 6, 7 | tendo0cl 36078 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
9 | dvh0g.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
10 | eqid 2622 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
11 | eqid 2622 | . . . . 5 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
12 | eqid 2622 | . . . . 5 ⊢ (+g‘(Scalar‘𝑈)) = (+g‘(Scalar‘𝑈)) | |
13 | 3, 4, 6, 9, 10, 11, 12 | dvhopvadd 36382 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉) |
14 | 1, 5, 8, 5, 8, 13 | syl122anc 1335 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉) |
15 | f1oi 6174 | . . . . . 6 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
16 | f1of 6137 | . . . . . 6 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
17 | fcoi2 6079 | . . . . . 6 ⊢ (( I ↾ 𝐵):𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)) | |
18 | 15, 16, 17 | mp2b 10 | . . . . 5 ⊢ (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵) |
19 | 18 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝐵) ∘ ( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
20 | eqid 2622 | . . . . . . 7 ⊢ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
21 | 3, 4, 6, 9, 10, 20, 12 | dvhfplusr 36373 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
22 | 21 | oveqd 6667 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂)) |
23 | 2, 3, 4, 6, 7, 20 | tendo0pl 36079 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
24 | 8, 23 | mpdan 702 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
25 | 22, 24 | eqtrd 2656 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = 𝑂) |
26 | 19, 25 | opeq12d 4410 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 〈(( I ↾ 𝐵) ∘ ( I ↾ 𝐵)), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉 = 〈( I ↾ 𝐵), 𝑂〉) |
27 | 14, 26 | eqtrd 2656 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈( I ↾ 𝐵), 𝑂〉) |
28 | 3, 9, 1 | dvhlmod 36399 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LMod) |
29 | eqid 2622 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
30 | 3, 4, 6, 9, 29 | dvhelvbasei 36377 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → 〈( I ↾ 𝐵), 𝑂〉 ∈ (Base‘𝑈)) |
31 | 1, 5, 8, 30 | syl12anc 1324 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 〈( I ↾ 𝐵), 𝑂〉 ∈ (Base‘𝑈)) |
32 | dvh0g.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
33 | 29, 11, 32 | lmod0vid 18895 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ 〈( I ↾ 𝐵), 𝑂〉 ∈ (Base‘𝑈)) → ((〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈( I ↾ 𝐵), 𝑂〉 ↔ 0 = 〈( I ↾ 𝐵), 𝑂〉)) |
34 | 28, 31, 33 | syl2anc 693 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((〈( I ↾ 𝐵), 𝑂〉(+g‘𝑈)〈( I ↾ 𝐵), 𝑂〉) = 〈( I ↾ 𝐵), 𝑂〉 ↔ 0 = 〈( I ↾ 𝐵), 𝑂〉)) |
35 | 27, 34 | mpbid 222 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 〈cop 4183 ↦ cmpt 4729 I cid 5023 ↾ cres 5116 ∘ ccom 5118 ⟶wf 5884 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 Basecbs 15857 +gcplusg 15941 Scalarcsca 15944 0gc0g 16100 LModclmod 18863 HLchlt 34637 LHypclh 35270 LTrncltrn 35387 TEndoctendo 36040 DVecHcdvh 36367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-lmod 18865 df-lvec 19103 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tendo 36043 df-edring 36045 df-dvech 36368 |
This theorem is referenced by: dvheveccl 36401 dib0 36453 dihmeetlem4preN 36595 dihmeetlem13N 36608 dihatlat 36623 dihpN 36625 |
Copyright terms: Public domain | W3C validator |