Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh0g Structured version   Visualization version   Unicode version

Theorem dvh0g 36400
Description: The zero vector of vector space H has the zero translation as its first member and the zero trace-preserving endomorphism as the second. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dvh0g.b  |-  B  =  ( Base `  K
)
dvh0g.h  |-  H  =  ( LHyp `  K
)
dvh0g.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvh0g.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvh0g.z  |-  .0.  =  ( 0g `  U )
dvh0g.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
dvh0g  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  =  <. (  _I  |`  B ) ,  O >. )
Distinct variable groups:    B, f    f, H    f, K    T, f    f, W
Allowed substitution hints:    U( f)    O( f)    .0. ( f)

Proof of Theorem dvh0g
Dummy variables  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dvh0g.b . . . . 5  |-  B  =  ( Base `  K
)
3 dvh0g.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 dvh0g.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4idltrn 35436 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
6 eqid 2622 . . . . 5  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
7 dvh0g.o . . . . 5  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
82, 3, 4, 6, 7tendo0cl 36078 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  ( (
TEndo `  K ) `  W ) )
9 dvh0g.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
10 eqid 2622 . . . . 5  |-  (Scalar `  U )  =  (Scalar `  U )
11 eqid 2622 . . . . 5  |-  ( +g  `  U )  =  ( +g  `  U )
12 eqid 2622 . . . . 5  |-  ( +g  `  (Scalar `  U )
)  =  ( +g  `  (Scalar `  U )
)
133, 4, 6, 9, 10, 11, 12dvhopvadd 36382 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  B )  e.  T  /\  O  e.  (
( TEndo `  K ) `  W ) )  /\  ( (  _I  |`  B )  e.  T  /\  O  e.  ( ( TEndo `  K
) `  W )
) )  ->  ( <. (  _I  |`  B ) ,  O >. ( +g  `  U ) <.
(  _I  |`  B ) ,  O >. )  =  <. ( (  _I  |`  B )  o.  (  _I  |`  B ) ) ,  ( O ( +g  `  (Scalar `  U ) ) O ) >. )
141, 5, 8, 5, 8, 13syl122anc 1335 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( <. (  _I  |`  B ) ,  O >. ( +g  `  U ) <.
(  _I  |`  B ) ,  O >. )  =  <. ( (  _I  |`  B )  o.  (  _I  |`  B ) ) ,  ( O ( +g  `  (Scalar `  U ) ) O ) >. )
15 f1oi 6174 . . . . . 6  |-  (  _I  |`  B ) : B -1-1-onto-> B
16 f1of 6137 . . . . . 6  |-  ( (  _I  |`  B ) : B -1-1-onto-> B  ->  (  _I  |`  B ) : B --> B )
17 fcoi2 6079 . . . . . 6  |-  ( (  _I  |`  B ) : B --> B  ->  (
(  _I  |`  B )  o.  (  _I  |`  B ) )  =  (  _I  |`  B ) )
1815, 16, 17mp2b 10 . . . . 5  |-  ( (  _I  |`  B )  o.  (  _I  |`  B ) )  =  (  _I  |`  B )
1918a1i 11 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  B )  o.  (  _I  |`  B ) )  =  (  _I  |`  B ) )
20 eqid 2622 . . . . . . 7  |-  ( s  e.  ( ( TEndo `  K ) `  W
) ,  t  e.  ( ( TEndo `  K
) `  W )  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )  =  ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
213, 4, 6, 9, 10, 20, 12dvhfplusr 36373 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( +g  `  (Scalar `  U ) )  =  ( s  e.  ( ( TEndo `  K ) `  W ) ,  t  e.  ( ( TEndo `  K ) `  W
)  |->  ( f  e.  T  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) ) )
2221oveqd 6667 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( O ( +g  `  (Scalar `  U )
) O )  =  ( O ( s  e.  ( ( TEndo `  K ) `  W
) ,  t  e.  ( ( TEndo `  K
) `  W )  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) O ) )
232, 3, 4, 6, 7, 20tendo0pl 36079 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  O  e.  ( ( TEndo `  K ) `  W ) )  -> 
( O ( s  e.  ( ( TEndo `  K ) `  W
) ,  t  e.  ( ( TEndo `  K
) `  W )  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) O )  =  O )
248, 23mpdan 702 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( O ( s  e.  ( ( TEndo `  K ) `  W
) ,  t  e.  ( ( TEndo `  K
) `  W )  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) ) O )  =  O )
2522, 24eqtrd 2656 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( O ( +g  `  (Scalar `  U )
) O )  =  O )
2619, 25opeq12d 4410 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
<. ( (  _I  |`  B )  o.  (  _I  |`  B ) ) ,  ( O ( +g  `  (Scalar `  U ) ) O ) >.  =  <. (  _I  |`  B ) ,  O >. )
2714, 26eqtrd 2656 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( <. (  _I  |`  B ) ,  O >. ( +g  `  U ) <.
(  _I  |`  B ) ,  O >. )  =  <. (  _I  |`  B ) ,  O >. )
283, 9, 1dvhlmod 36399 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LMod )
29 eqid 2622 . . . . 5  |-  ( Base `  U )  =  (
Base `  U )
303, 4, 6, 9, 29dvhelvbasei 36377 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( (  _I  |`  B )  e.  T  /\  O  e.  (
( TEndo `  K ) `  W ) ) )  ->  <. (  _I  |`  B ) ,  O >.  e.  (
Base `  U )
)
311, 5, 8, 30syl12anc 1324 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  -> 
<. (  _I  |`  B ) ,  O >.  e.  (
Base `  U )
)
32 dvh0g.z . . . 4  |-  .0.  =  ( 0g `  U )
3329, 11, 32lmod0vid 18895 . . 3  |-  ( ( U  e.  LMod  /\  <. (  _I  |`  B ) ,  O >.  e.  ( Base `  U ) )  ->  ( ( <.
(  _I  |`  B ) ,  O >. ( +g  `  U ) <.
(  _I  |`  B ) ,  O >. )  =  <. (  _I  |`  B ) ,  O >.  <->  .0.  =  <. (  _I  |`  B ) ,  O >. )
)
3428, 31, 33syl2anc 693 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( <. (  _I  |`  B ) ,  O >. ( +g  `  U
) <. (  _I  |`  B ) ,  O >. )  =  <. (  _I  |`  B ) ,  O >.  <->  .0.  =  <. (  _I  |`  B ) ,  O >. )
)
3527, 34mpbid 222 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  =  <. (  _I  |`  B ) ,  O >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183    |-> cmpt 4729    _I cid 5023    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   0gc0g 16100   LModclmod 18863   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   TEndoctendo 36040   DVecHcdvh 36367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lvec 19103  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043  df-edring 36045  df-dvech 36368
This theorem is referenced by:  dvheveccl  36401  dib0  36453  dihmeetlem4preN  36595  dihmeetlem13N  36608  dihatlat  36623  dihpN  36625
  Copyright terms: Public domain W3C validator