Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrcan5 Structured version   Visualization version   Unicode version

Theorem dvrcan5 29793
Description: Cancellation law for common factor in ratio. (divcan5 10727 analog.) (Contributed by Thierry Arnoux, 26-Oct-2016.)
Hypotheses
Ref Expression
dvrcan5.b  |-  B  =  ( Base `  R
)
dvrcan5.o  |-  U  =  (Unit `  R )
dvrcan5.d  |-  ./  =  (/r
`  R )
dvrcan5.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvrcan5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( ( X  .x.  Z )  ./  ( Y  .x.  Z ) )  =  ( X 
./  Y ) )

Proof of Theorem dvrcan5
StepHypRef Expression
1 dvrcan5.b . . . . . . 7  |-  B  =  ( Base `  R
)
2 dvrcan5.o . . . . . . 7  |-  U  =  (Unit `  R )
31, 2unitss 18660 . . . . . 6  |-  U  C_  B
4 simpr3 1069 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  Z  e.  U )
53, 4sseldi 3601 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  Z  e.  B )
6 dvrcan5.t . . . . . . 7  |-  .x.  =  ( .r `  R )
72, 6unitmulcl 18664 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  Z  e.  U )  ->  ( Y  .x.  Z )  e.  U )
873adant3r1 1274 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( Y  .x.  Z )  e.  U
)
9 eqid 2622 . . . . . 6  |-  ( invr `  R )  =  (
invr `  R )
10 dvrcan5.d . . . . . 6  |-  ./  =  (/r
`  R )
111, 6, 2, 9, 10dvrval 18685 . . . . 5  |-  ( ( Z  e.  B  /\  ( Y  .x.  Z )  e.  U )  -> 
( Z  ./  ( Y  .x.  Z ) )  =  ( Z  .x.  ( ( invr `  R
) `  ( Y  .x.  Z ) ) ) )
125, 8, 11syl2anc 693 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( Z  ./  ( Y  .x.  Z
) )  =  ( Z  .x.  ( (
invr `  R ) `  ( Y  .x.  Z
) ) ) )
13 simpl 473 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  R  e.  Ring )
14 eqid 2622 . . . . . . 7  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
152, 14unitgrp 18667 . . . . . 6  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
1613, 15syl 17 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( (mulGrp `  R )s  U )  e.  Grp )
17 simpr2 1068 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  Y  e.  U )
182, 14unitgrpbas 18666 . . . . . . 7  |-  U  =  ( Base `  (
(mulGrp `  R )s  U
) )
19 fvex 6201 . . . . . . . . 9  |-  (Unit `  R )  e.  _V
202, 19eqeltri 2697 . . . . . . . 8  |-  U  e. 
_V
21 eqid 2622 . . . . . . . . . 10  |-  (mulGrp `  R )  =  (mulGrp `  R )
2221, 6mgpplusg 18493 . . . . . . . . 9  |-  .x.  =  ( +g  `  (mulGrp `  R ) )
2314, 22ressplusg 15993 . . . . . . . 8  |-  ( U  e.  _V  ->  .x.  =  ( +g  `  ( (mulGrp `  R )s  U ) ) )
2420, 23ax-mp 5 . . . . . . 7  |-  .x.  =  ( +g  `  ( (mulGrp `  R )s  U ) )
252, 14, 9invrfval 18673 . . . . . . 7  |-  ( invr `  R )  =  ( invg `  (
(mulGrp `  R )s  U
) )
2618, 24, 25grpinvadd 17493 . . . . . 6  |-  ( ( ( (mulGrp `  R
)s 
U )  e.  Grp  /\  Y  e.  U  /\  Z  e.  U )  ->  ( ( invr `  R
) `  ( Y  .x.  Z ) )  =  ( ( ( invr `  R ) `  Z
)  .x.  ( ( invr `  R ) `  Y ) ) )
2726oveq2d 6666 . . . . 5  |-  ( ( ( (mulGrp `  R
)s 
U )  e.  Grp  /\  Y  e.  U  /\  Z  e.  U )  ->  ( Z  .x.  (
( invr `  R ) `  ( Y  .x.  Z
) ) )  =  ( Z  .x.  (
( ( invr `  R
) `  Z )  .x.  ( ( invr `  R
) `  Y )
) ) )
2816, 17, 4, 27syl3anc 1326 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( Z  .x.  ( ( invr `  R
) `  ( Y  .x.  Z ) ) )  =  ( Z  .x.  ( ( ( invr `  R ) `  Z
)  .x.  ( ( invr `  R ) `  Y ) ) ) )
29 eqid 2622 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
302, 9, 6, 29unitrinv 18678 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Z  e.  U )  ->  ( Z  .x.  ( ( invr `  R ) `  Z
) )  =  ( 1r `  R ) )
3130oveq1d 6665 . . . . . 6  |-  ( ( R  e.  Ring  /\  Z  e.  U )  ->  (
( Z  .x.  (
( invr `  R ) `  Z ) )  .x.  ( ( invr `  R
) `  Y )
)  =  ( ( 1r `  R ) 
.x.  ( ( invr `  R ) `  Y
) ) )
32313ad2antr3 1228 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( ( Z  .x.  ( ( invr `  R ) `  Z
) )  .x.  (
( invr `  R ) `  Y ) )  =  ( ( 1r `  R )  .x.  (
( invr `  R ) `  Y ) ) )
332, 9unitinvcl 18674 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  Z  e.  U )  ->  (
( invr `  R ) `  Z )  e.  U
)
34333ad2antr3 1228 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( ( invr `  R ) `  Z )  e.  U
)
353, 34sseldi 3601 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( ( invr `  R ) `  Z )  e.  B
)
362, 9unitinvcl 18674 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  Y  e.  U )  ->  (
( invr `  R ) `  Y )  e.  U
)
37363ad2antr2 1227 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( ( invr `  R ) `  Y )  e.  U
)
383, 37sseldi 3601 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( ( invr `  R ) `  Y )  e.  B
)
391, 6ringass 18564 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( Z  e.  B  /\  ( ( invr `  R
) `  Z )  e.  B  /\  (
( invr `  R ) `  Y )  e.  B
) )  ->  (
( Z  .x.  (
( invr `  R ) `  Z ) )  .x.  ( ( invr `  R
) `  Y )
)  =  ( Z 
.x.  ( ( (
invr `  R ) `  Z )  .x.  (
( invr `  R ) `  Y ) ) ) )
4013, 5, 35, 38, 39syl13anc 1328 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( ( Z  .x.  ( ( invr `  R ) `  Z
) )  .x.  (
( invr `  R ) `  Y ) )  =  ( Z  .x.  (
( ( invr `  R
) `  Z )  .x.  ( ( invr `  R
) `  Y )
) ) )
411, 6, 29ringlidm 18571 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
( invr `  R ) `  Y )  e.  B
)  ->  ( ( 1r `  R )  .x.  ( ( invr `  R
) `  Y )
)  =  ( (
invr `  R ) `  Y ) )
4213, 38, 41syl2anc 693 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( ( 1r `  R )  .x.  ( ( invr `  R
) `  Y )
)  =  ( (
invr `  R ) `  Y ) )
4332, 40, 423eqtr3d 2664 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( Z  .x.  ( ( ( invr `  R ) `  Z
)  .x.  ( ( invr `  R ) `  Y ) ) )  =  ( ( invr `  R ) `  Y
) )
4412, 28, 433eqtrd 2660 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( Z  ./  ( Y  .x.  Z
) )  =  ( ( invr `  R
) `  Y )
)
4544oveq2d 6666 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( X  .x.  ( Z  ./  ( Y  .x.  Z ) ) )  =  ( X 
.x.  ( ( invr `  R ) `  Y
) ) )
46 simpr1 1067 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  X  e.  B )
471, 2, 10, 6dvrass 18690 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Z  e.  B  /\  ( Y  .x.  Z )  e.  U ) )  ->  ( ( X 
.x.  Z )  ./  ( Y  .x.  Z ) )  =  ( X 
.x.  ( Z  ./  ( Y  .x.  Z ) ) ) )
4813, 46, 5, 8, 47syl13anc 1328 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( ( X  .x.  Z )  ./  ( Y  .x.  Z ) )  =  ( X 
.x.  ( Z  ./  ( Y  .x.  Z ) ) ) )
491, 6, 2, 9, 10dvrval 18685 . . 3  |-  ( ( X  e.  B  /\  Y  e.  U )  ->  ( X  ./  Y
)  =  ( X 
.x.  ( ( invr `  R ) `  Y
) ) )
5046, 17, 49syl2anc 693 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( X  ./  Y )  =  ( X  .x.  ( (
invr `  R ) `  Y ) ) )
5145, 48, 503eqtr4d 2666 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  U  /\  Z  e.  U )
)  ->  ( ( X  .x.  Z )  ./  ( Y  .x.  Z ) )  =  ( X 
./  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   .rcmulr 15942   Grpcgrp 17422  mulGrpcmgp 18489   1rcur 18501   Ringcrg 18547  Unitcui 18639   invrcinvr 18671  /rcdvr 18682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683
This theorem is referenced by:  rhmdvd  29821
  Copyright terms: Public domain W3C validator