MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemg Structured version   Visualization version   GIF version

Theorem efgredlemg 18155
Description: Lemma for efgred 18161. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((#‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((#‘𝐵) − 1) − 1)
efgredlemb.p (𝜑𝑃 ∈ (0...(#‘(𝐴𝐾))))
efgredlemb.q (𝜑𝑄 ∈ (0...(#‘(𝐵𝐿))))
efgredlemb.u (𝜑𝑈 ∈ (𝐼 × 2𝑜))
efgredlemb.v (𝜑𝑉 ∈ (𝐼 × 2𝑜))
efgredlemb.6 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
efgredlemb.7 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
Assertion
Ref Expression
efgredlemg (𝜑 → (#‘(𝐴𝐾)) = (#‘(𝐵𝐿)))
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑃   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑈,𝑛,𝑣,𝑤,𝑦,𝑧   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑛,𝑉,𝑣,𝑤,𝑦,𝑧   𝑄,𝑛,𝑡,𝑣,𝑤,𝑦,𝑧   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   𝑃(𝑥,𝑘,𝑚,𝑎,𝑏)   𝑄(𝑥,𝑘,𝑚,𝑎,𝑏)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑉(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)

Proof of Theorem efgredlemg
StepHypRef Expression
1 efgval.w . . . . . 6 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 fviss 6256 . . . . . 6 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
31, 2eqsstri 3635 . . . . 5 𝑊 ⊆ Word (𝐼 × 2𝑜)
4 efgval.r . . . . . . 7 = ( ~FG𝐼)
5 efgval2.m . . . . . . 7 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
6 efgval2.t . . . . . . 7 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
7 efgred.d . . . . . . 7 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
8 efgred.s . . . . . . 7 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
9 efgredlem.1 . . . . . . 7 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
10 efgredlem.2 . . . . . . 7 (𝜑𝐴 ∈ dom 𝑆)
11 efgredlem.3 . . . . . . 7 (𝜑𝐵 ∈ dom 𝑆)
12 efgredlem.4 . . . . . . 7 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
13 efgredlem.5 . . . . . . 7 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
14 efgredlemb.k . . . . . . 7 𝐾 = (((#‘𝐴) − 1) − 1)
15 efgredlemb.l . . . . . . 7 𝐿 = (((#‘𝐵) − 1) − 1)
161, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15efgredlemf 18154 . . . . . 6 (𝜑 → ((𝐴𝐾) ∈ 𝑊 ∧ (𝐵𝐿) ∈ 𝑊))
1716simpld 475 . . . . 5 (𝜑 → (𝐴𝐾) ∈ 𝑊)
183, 17sseldi 3601 . . . 4 (𝜑 → (𝐴𝐾) ∈ Word (𝐼 × 2𝑜))
19 lencl 13324 . . . 4 ((𝐴𝐾) ∈ Word (𝐼 × 2𝑜) → (#‘(𝐴𝐾)) ∈ ℕ0)
2018, 19syl 17 . . 3 (𝜑 → (#‘(𝐴𝐾)) ∈ ℕ0)
2120nn0cnd 11353 . 2 (𝜑 → (#‘(𝐴𝐾)) ∈ ℂ)
2216simprd 479 . . . . 5 (𝜑 → (𝐵𝐿) ∈ 𝑊)
233, 22sseldi 3601 . . . 4 (𝜑 → (𝐵𝐿) ∈ Word (𝐼 × 2𝑜))
24 lencl 13324 . . . 4 ((𝐵𝐿) ∈ Word (𝐼 × 2𝑜) → (#‘(𝐵𝐿)) ∈ ℕ0)
2523, 24syl 17 . . 3 (𝜑 → (#‘(𝐵𝐿)) ∈ ℕ0)
2625nn0cnd 11353 . 2 (𝜑 → (#‘(𝐵𝐿)) ∈ ℂ)
27 2cnd 11093 . 2 (𝜑 → 2 ∈ ℂ)
281, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13efgredlema 18153 . . . . . . 7 (𝜑 → (((#‘𝐴) − 1) ∈ ℕ ∧ ((#‘𝐵) − 1) ∈ ℕ))
2928simpld 475 . . . . . 6 (𝜑 → ((#‘𝐴) − 1) ∈ ℕ)
301, 4, 5, 6, 7, 8efgsdmi 18145 . . . . . 6 ((𝐴 ∈ dom 𝑆 ∧ ((#‘𝐴) − 1) ∈ ℕ) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((#‘𝐴) − 1) − 1))))
3110, 29, 30syl2anc 693 . . . . 5 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((#‘𝐴) − 1) − 1))))
3214fveq2i 6194 . . . . . . 7 (𝐴𝐾) = (𝐴‘(((#‘𝐴) − 1) − 1))
3332fveq2i 6194 . . . . . 6 (𝑇‘(𝐴𝐾)) = (𝑇‘(𝐴‘(((#‘𝐴) − 1) − 1)))
3433rneqi 5352 . . . . 5 ran (𝑇‘(𝐴𝐾)) = ran (𝑇‘(𝐴‘(((#‘𝐴) − 1) − 1)))
3531, 34syl6eleqr 2712 . . . 4 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐴𝐾)))
361, 4, 5, 6efgtlen 18139 . . . 4 (((𝐴𝐾) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐴𝐾))) → (#‘(𝑆𝐴)) = ((#‘(𝐴𝐾)) + 2))
3717, 35, 36syl2anc 693 . . 3 (𝜑 → (#‘(𝑆𝐴)) = ((#‘(𝐴𝐾)) + 2))
3828simprd 479 . . . . . . 7 (𝜑 → ((#‘𝐵) − 1) ∈ ℕ)
391, 4, 5, 6, 7, 8efgsdmi 18145 . . . . . . 7 ((𝐵 ∈ dom 𝑆 ∧ ((#‘𝐵) − 1) ∈ ℕ) → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((#‘𝐵) − 1) − 1))))
4011, 38, 39syl2anc 693 . . . . . 6 (𝜑 → (𝑆𝐵) ∈ ran (𝑇‘(𝐵‘(((#‘𝐵) − 1) − 1))))
4112, 40eqeltrd 2701 . . . . 5 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐵‘(((#‘𝐵) − 1) − 1))))
4215fveq2i 6194 . . . . . . 7 (𝐵𝐿) = (𝐵‘(((#‘𝐵) − 1) − 1))
4342fveq2i 6194 . . . . . 6 (𝑇‘(𝐵𝐿)) = (𝑇‘(𝐵‘(((#‘𝐵) − 1) − 1)))
4443rneqi 5352 . . . . 5 ran (𝑇‘(𝐵𝐿)) = ran (𝑇‘(𝐵‘(((#‘𝐵) − 1) − 1)))
4541, 44syl6eleqr 2712 . . . 4 (𝜑 → (𝑆𝐴) ∈ ran (𝑇‘(𝐵𝐿)))
461, 4, 5, 6efgtlen 18139 . . . 4 (((𝐵𝐿) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐵𝐿))) → (#‘(𝑆𝐴)) = ((#‘(𝐵𝐿)) + 2))
4722, 45, 46syl2anc 693 . . 3 (𝜑 → (#‘(𝑆𝐴)) = ((#‘(𝐵𝐿)) + 2))
4837, 47eqtr3d 2658 . 2 (𝜑 → ((#‘(𝐴𝐾)) + 2) = ((#‘(𝐵𝐿)) + 2))
4921, 26, 27, 48addcan2ad 10242 1 (𝜑 → (#‘(𝐴𝐾)) = (#‘(𝐵𝐿)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  cdif 3571  c0 3915  {csn 4177  cop 4183  cotp 4185   ciun 4520   class class class wbr 4653  cmpt 4729   I cid 5023   × cxp 5112  dom cdm 5114  ran crn 5115  cfv 5888  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  2𝑜c2o 7554  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cmin 10266  cn 11020  2c2 11070  0cn0 11292  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   splice csplice 13296  ⟨“cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593
This theorem is referenced by:  efgredleme  18156
  Copyright terms: Public domain W3C validator