MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgtlen Structured version   Visualization version   GIF version

Theorem efgtlen 18139
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efgtlen ((𝑋𝑊𝐴 ∈ ran (𝑇𝑋)) → (#‘𝐴) = ((#‘𝑋) + 2))
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem efgtlen
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 efgval.r . . . . . . . 8 = ( ~FG𝐼)
3 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
4 efgval2.t . . . . . . . 8 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
51, 2, 3, 4efgtf 18135 . . . . . . 7 (𝑋𝑊 → ((𝑇𝑋) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇𝑋):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊))
65simpld 475 . . . . . 6 (𝑋𝑊 → (𝑇𝑋) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
76rneqd 5353 . . . . 5 (𝑋𝑊 → ran (𝑇𝑋) = ran (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
87eleq2d 2687 . . . 4 (𝑋𝑊 → (𝐴 ∈ ran (𝑇𝑋) ↔ 𝐴 ∈ ran (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))))
9 eqid 2622 . . . . 5 (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
10 ovex 6678 . . . . 5 (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ V
119, 10elrnmpt2 6773 . . . 4 (𝐴 ∈ ran (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ↔ ∃𝑎 ∈ (0...(#‘𝑋))∃𝑏 ∈ (𝐼 × 2𝑜)𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
128, 11syl6bb 276 . . 3 (𝑋𝑊 → (𝐴 ∈ ran (𝑇𝑋) ↔ ∃𝑎 ∈ (0...(#‘𝑋))∃𝑏 ∈ (𝐼 × 2𝑜)𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
13 fviss 6256 . . . . . . . . 9 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
141, 13eqsstri 3635 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2𝑜)
15 simpl 473 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑋𝑊)
1614, 15sseldi 3601 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑋 ∈ Word (𝐼 × 2𝑜))
17 elfzuz 12338 . . . . . . . . 9 (𝑎 ∈ (0...(#‘𝑋)) → 𝑎 ∈ (ℤ‘0))
1817ad2antrl 764 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑎 ∈ (ℤ‘0))
19 eluzfz2b 12350 . . . . . . . 8 (𝑎 ∈ (ℤ‘0) ↔ 𝑎 ∈ (0...𝑎))
2018, 19sylib 208 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑎 ∈ (0...𝑎))
21 simprl 794 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑎 ∈ (0...(#‘𝑋)))
22 simprr 796 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑏 ∈ (𝐼 × 2𝑜))
233efgmf 18126 . . . . . . . . . 10 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)
2423ffvelrni 6358 . . . . . . . . 9 (𝑏 ∈ (𝐼 × 2𝑜) → (𝑀𝑏) ∈ (𝐼 × 2𝑜))
2522, 24syl 17 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (𝑀𝑏) ∈ (𝐼 × 2𝑜))
2622, 25s2cld 13616 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2𝑜))
2716, 20, 21, 26spllen 13505 . . . . . 6 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (#‘(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = ((#‘𝑋) + ((#‘⟨“𝑏(𝑀𝑏)”⟩) − (𝑎𝑎))))
28 s2len 13634 . . . . . . . . . 10 (#‘⟨“𝑏(𝑀𝑏)”⟩) = 2
2928a1i 11 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (#‘⟨“𝑏(𝑀𝑏)”⟩) = 2)
30 eluzelcn 11699 . . . . . . . . . . 11 (𝑎 ∈ (ℤ‘0) → 𝑎 ∈ ℂ)
3118, 30syl 17 . . . . . . . . . 10 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑎 ∈ ℂ)
3231subidd 10380 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (𝑎𝑎) = 0)
3329, 32oveq12d 6668 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → ((#‘⟨“𝑏(𝑀𝑏)”⟩) − (𝑎𝑎)) = (2 − 0))
34 2cn 11091 . . . . . . . . 9 2 ∈ ℂ
3534subid1i 10353 . . . . . . . 8 (2 − 0) = 2
3633, 35syl6eq 2672 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → ((#‘⟨“𝑏(𝑀𝑏)”⟩) − (𝑎𝑎)) = 2)
3736oveq2d 6666 . . . . . 6 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → ((#‘𝑋) + ((#‘⟨“𝑏(𝑀𝑏)”⟩) − (𝑎𝑎))) = ((#‘𝑋) + 2))
3827, 37eqtrd 2656 . . . . 5 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (#‘(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = ((#‘𝑋) + 2))
39 fveq2 6191 . . . . . 6 (𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → (#‘𝐴) = (#‘(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
4039eqeq1d 2624 . . . . 5 (𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → ((#‘𝐴) = ((#‘𝑋) + 2) ↔ (#‘(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = ((#‘𝑋) + 2)))
4138, 40syl5ibrcom 237 . . . 4 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → (#‘𝐴) = ((#‘𝑋) + 2)))
4241rexlimdvva 3038 . . 3 (𝑋𝑊 → (∃𝑎 ∈ (0...(#‘𝑋))∃𝑏 ∈ (𝐼 × 2𝑜)𝐴 = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) → (#‘𝐴) = ((#‘𝑋) + 2)))
4312, 42sylbid 230 . 2 (𝑋𝑊 → (𝐴 ∈ ran (𝑇𝑋) → (#‘𝐴) = ((#‘𝑋) + 2)))
4443imp 445 1 ((𝑋𝑊𝐴 ∈ ran (𝑇𝑋)) → (#‘𝐴) = ((#‘𝑋) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wrex 2913  cdif 3571  cop 4183  cotp 4185  cmpt 4729   I cid 5023   × cxp 5112  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  2𝑜c2o 7554  cc 9934  0cc0 9936   + caddc 9939  cmin 10266  2c2 11070  cuz 11687  ...cfz 12326  #chash 13117  Word cword 13291   splice csplice 13296  ⟨“cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593
This theorem is referenced by:  efgsfo  18152  efgredlemg  18155  efgredlemd  18157  efgredlem  18160  frgpnabllem1  18276
  Copyright terms: Public domain W3C validator